A173714 Floor(Lucas(n+1)/2), Lucas(n) = A000032(n).
0, 1, 2, 3, 5, 9, 14, 23, 38, 61, 99, 161, 260, 421, 682, 1103, 1785, 2889, 4674, 7563, 12238, 19801, 32039, 51841, 83880, 135721, 219602, 355323, 574925, 930249, 1505174
Offset: 0
Examples
a(5) = a(4) + a(3) + 1 = 5 +3 +1 =9 because 5 mod 3 = 2. a(6) = a(5) + a(4) = 9 +5 =14 because 6 mod 3 <>2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..280
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Programs
-
Magma
[Floor(Lucas(n+1)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
-
Maple
with(combinat): g:=(a,b,n)->fibonacci(n-1)*a+fibonacci(n)*b + floor(fibonacci(n+1)/2): seq(g(0,1,n),n=0..30)
-
Mathematica
Table[Floor[LucasL[n + 1]/2], {n,0,50}] (* G. C. Greubel, Nov 24 2016 *)
Formula
a(0)= 0, a(1)=1, a(n)=a(n-1)+a(n-2)+1 if n mod 3 =2, else a(n)=a(n-1)+a(n-2).
G.f.: x*(1+x-x^3)/[(1-x-x^2)*(1-x^3)].
a(n) = a(n-1) +a(n-2) +(1+(-1)^Fib(n+1))/2.
a(n) = Fibonacci(n) + floor(Fibonacci(n+1)/2). - Gary Detlefs, Dec 10 2010
Comments