cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173722 Partial sums of round(n^2/8).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 12, 18, 26, 36, 49, 64, 82, 103, 128, 156, 188, 224, 265, 310, 360, 415, 476, 542, 614, 692, 777, 868, 966, 1071, 1184, 1304, 1432, 1568, 1713, 1866, 2028, 2199, 2380, 2570, 2770, 2980, 3201, 3432, 3674, 3927, 4192, 4468, 4756, 5056, 5369
Offset: 0

Views

Author

Mircea Merca, Nov 26 2010

Keywords

Comments

Partial sums of A001971.

Examples

			a(5) = round(1/8) + round(4/8) + round(9/8) + round(16/8) + round(25/8) = 0 + 1 + 1 + 2 + 3 = 7.
		

Crossrefs

Cf. A001971.

Programs

Formula

a(n) = Sum_{k=0..n} round(k^2/8).
a(n) = round((2*n^3+3*n^2+4*n)/48).
a(n) = round((2*n+1)*(2*n^2+2*n+3)/96).
a(n) = floor((n+2)*(2*n^2-n+6)/48).
a(n) = ceiling((2*n^3+3*n^2+4*n-9)/48).
a(n) = a(n-4)+n*(n-3)/2+2, n>3.
G.f.: x^2*(1-x+x^2) / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Nov 26 2010
a(n) = 3*(-1)^n/32+n^2/16+n/12+n^3/24+1/32-A057077(n)/8. - R. J. Mathar, Nov 26 2010