cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177116 Partial sums of round(n^2/11).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 90, 110, 133, 159, 188, 221, 257, 297, 341, 389, 441, 498, 559, 625, 696, 772, 854, 941, 1034, 1133, 1238, 1349, 1467, 1591, 1722, 1860, 2005, 2158, 2318, 2486, 2662, 2846, 3038, 3239, 3448, 3666, 3893
Offset: 0

Views

Author

Mircea Merca, Dec 09 2010

Keywords

Comments

The round function, also called the nearest integer function, is defined here by round(x)=floor(x+1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).

Examples

			a(11) = 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 6 + 7 + 9 + 11 = 44.
		

Crossrefs

Cf. A173690 (k=5), A173691 (k=6), A173722 (k=8), A177100 (k=9), A181120 (k=12).

Programs

  • Maple
    seq(round((2*n^3+3*n^2-11*n)/66),n=0..50)
  • Mathematica
    Accumulate[Round[Range[0,50]^2/11]] (* or *) LinearRecurrence[{3,-3,1,0,0,0,0,0,0,0,1,-3,3,-1},{0,0,0,1,2,4,7,11,17,24,33,44,57,72},60] (* Harvey P. Dale, Dec 10 2014 *)
  • PARI
    a(n)=(2*n^3+3*n^2-11*n+18)\66 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = round((n-2)*(n+3)*(2*n+1)/66).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 18)/66).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 30)/66).
a(n) = round(n*(2*n^2 + 3*n - 11)/66).
a(n) = a(n-11) + (n+1)*(n-11) + 44, n > 10.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14). - R. J. Mathar, Dec 10 2010
G.f.: x^3 *(1+x) *(x^2-x+1) *(x^4-x^3+x^2-x+1) / ( (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) *(x-1)^4 ). - R. J. Mathar, Dec 10 2010 [Typo fixed by Colin Barker, Oct 10 2012]

A325656 a(n) = (1/24)*n*((4*n + 3)*(2*n^2 + 1) - 3*(-1)^n).

Original entry on oeis.org

0, 1, 8, 36, 104, 245, 492, 896, 1504, 2385, 3600, 5236, 7368, 10101, 13524, 17760, 22912, 29121, 36504, 45220, 55400, 67221, 80828, 96416, 114144, 134225, 156832, 182196, 210504, 242005, 276900, 315456, 357888, 404481, 455464, 511140, 571752, 637621, 709004, 786240
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325655.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3)));
    
  • Magma
    [(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): n in [0..50]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3); Array[a,50,0]
  • PARI
    a(n) = (1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3);

Formula

O.g.f.: -x*(1 + 5*x + 13*x*2 + 9*x^3 + 4*x^4)/((-1 + x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 78*exp(2*x)*x + 54*exp(2*x)*x^2 + 8*exp(2*x)*x*3).
a(n) = a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (1/12)*n^2*(4*n^2 + 3*n + 2) if n is even.
a(n) = (1/12)*n*(n + 1)*(4*n^2 - n + 3) if n is odd.
a(n) = n*A173722(2*n). - Stefano Spezia, Dec 21 2021
Showing 1-2 of 2 results.