cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173733 Primes p which give primes when 1331 = 11^3 is prefixed (see A173579).

Original entry on oeis.org

3, 17, 53, 83, 107, 227, 251, 269, 293, 347, 383, 431, 443, 521, 587, 599, 641, 647, 683, 719, 761, 773, 821, 857, 929, 1031, 1097, 1217, 1223, 1301, 1367, 1409, 1433, 1451, 1619, 1637, 1709, 1787, 1973, 2081, 2087, 2129, 2399, 2477, 2591, 2633, 2657, 2693
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 23 2010

Keywords

Comments

N = 1331 = 11^3, p k-digit prime, to check if q = N * 10^k + p is prime
With exception of 3 necessarily p of form 3k+2, as sod(1331 = 8)

Examples

			13313 = prime(1581) => a(1) = prime(2) = 3
133117 = prime(12425) => a(2) = prime(7) = 17
133153 = prime(12427) => a(3) = prime(16) = 53
13311217 = prime(868166) => a(28) = prime(199) = 1217
13311223 = prime(868167) => a(29) = prime(200) = 1223
Note: two consecutive primes P = prime(n), Q = prime(n+1) yield consecutive prime concatenations "N P" = prime(m) and "N Q" = prime(m+1)
		

References

  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985
  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #]]]]&] (* Harvey P. Dale, Jun 09 2015 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 24 2010