A173740 Triangle T(n,k) = binomial(n,k) + 2 for 1 <= k <= n - 1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 8, 6, 1, 1, 7, 12, 12, 7, 1, 1, 8, 17, 22, 17, 8, 1, 1, 9, 23, 37, 37, 23, 9, 1, 1, 10, 30, 58, 72, 58, 30, 10, 1, 1, 11, 38, 86, 128, 128, 86, 38, 11, 1, 1, 12, 47, 122, 212, 254, 212, 122, 47, 12, 1, 1, 13, 57, 167, 332, 464, 464, 332, 167, 57, 13, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 5, 5, 1; 1, 6, 8, 6, 1; 1, 7, 12, 12, 7, 1; 1, 8, 17, 22, 17, 8, 1; 1, 9, 23, 37, 37, 23, 9, 1; 1, 10, 30, 58, 72, 58, 30, 10, 1; 1, 11, 38, 86, 128, 128, 86, 38, 11, 1; 1, 12, 47, 122, 212, 254, 212, 122, 47, 12, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 2 >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
Mathematica
T[n_, m_] = Binomial[n, m] + 2*If[m*(n - m) > 0, 1, 0]; Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
-
Maxima
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 2$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 08 2018 */
-
Sage
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 2 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
Formula
From Franck Maminirina Ramaharo, Dec 08 2018:(Start)
n-th row polynomial is 1 - (-1)^(2^n) + (1 + x)^n + 2*(x - x^n)/(1 - x).
G.f.: (1 - (1 + x)*y + 3*x*y^2 - 2*(x + x^2)*y^3)/((1 - y)*(1 - x*y)*(1 - y - x*y)).
E.g.f.: (2 - 2*x + 2*x*exp(y) - 2*exp(x*y) + (1 - x)*exp((1 + x)*y))/(1 - x). (End)
Sum_{k=0..n} T(n, k) = 2^n + 2*(n - 1 + [n=0]) = 2*A100314(n). - G. C. Greubel, Feb 13 2021
Extensions
Edited and name clarified by Franck Maminirina Ramaharo, Dec 08 2018
Comments