cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309608 Digits of the 10-adic integer (-13/9)^(1/3).

Original entry on oeis.org

7, 0, 3, 0, 3, 3, 7, 4, 3, 3, 4, 2, 5, 1, 7, 3, 8, 4, 7, 6, 4, 5, 0, 4, 8, 7, 8, 4, 6, 3, 0, 2, 8, 3, 2, 4, 4, 6, 2, 3, 5, 0, 4, 6, 8, 2, 0, 1, 9, 5, 5, 4, 2, 8, 7, 8, 6, 6, 5, 0, 8, 9, 8, 2, 3, 8, 0, 1, 9, 5, 8, 6, 2, 3, 2, 8, 7, 7, 9, 8, 8, 4, 5, 0, 7, 4, 7, 1, 0, 2, 4, 9, 0, 8, 5, 4, 5, 0, 2, 6
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       7^3 == 3      (mod 10).
       7^3 == 43     (mod 10^2).
     307^3 == 443    (mod 10^3).
     307^3 == 4443   (mod 10^4).
   30307^3 == 44443  (mod 10^5).
  330307^3 == 444443 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-13/9+O(2^N))^(1/3), 2^N), Mod((-13/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309608(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 + 13)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309608(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 13) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A093163 Primes of the form 40*R_k + 3, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

3, 43, 443, 444443, 444444443, 444444444443, 444444444444444444444444444443, 44444444444444444444444444444443
Offset: 1

Views

Author

Rick L. Shepherd, Mar 26 2004

Keywords

Comments

Primes of the form (4*10^k - 13)/9; the next term a(9) is a 183-digit number. - Vincenzo Librandi, Nov 16 2010

Crossrefs

Cf. A056661 (corresponding k), A173770.

Programs

  • Mathematica
    f[n_] := (4*10^n-13)/9; Select[f[Range[50]], PrimeQ] (* Amiram Eldar, Nov 23 2018 *)
    Select[Table[FromDigits[PadLeft[{3},n,4]],{n,40}],PrimeQ] (* Harvey P. Dale, Dec 19 2022 *)

A104660 Number of distinct prime divisors of 44...443 (with n 4s).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 6, 3, 4, 3, 3, 6, 4, 1, 5, 1, 4, 3, 5, 3, 6, 4, 2, 6, 2, 2, 3, 5, 3, 4, 4, 4, 2, 2, 4, 4, 3, 4, 5, 6, 3, 3, 5, 2, 4, 3, 5, 4, 4, 3, 6, 4, 3, 6, 6, 4, 5, 4, 2, 4, 5, 2, 4, 5, 6, 4, 4, 3, 6, 5, 4, 5
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 21 2005

Keywords

Examples

			The number of distinct prime divisors of 43 is 1 (prime).
The number of distinct prime divisors of 443 is 1 (prime).
The number of distinct prime divisors of 4443 is 2.
		

Crossrefs

Programs

  • Maple
    A104660 := proc(n) x := [3,seq(4,k=1..n)] ; add(op(i,x)*10^(i-1),i=1..nops(x)) ; numtheory[factorset](%) ; nops(%) ; end proc:
    seq(A104660(n),n=1..45) ; # R. J. Mathar, Aug 23 2011
  • Mathematica
    Table[PrimeNu[FromDigits[Join[Table[4, {n}], {3}]]], {n, 50}] (* Alonso del Arte, Aug 23 2011 *)
    Table[PrimeNu[FromDigits[PadLeft[{3},n,4]]],{n,2,70}] (* Harvey P. Dale, Aug 22 2016 *)

Formula

a(n) = A001221(A173770(n+1)). - Amiram Eldar, Jan 25 2020

Extensions

More terms from R. J. Mathar and Alonso del Arte, Aug 23 2011
More terms from Amiram Eldar, Jan 25 2020
Showing 1-3 of 3 results.