A173772 a(n) = (4*10^n + 23)/9.
7, 47, 447, 4447, 44447, 444447, 4444447, 44444447, 444444447, 4444444447, 44444444447, 444444444447, 4444444444447, 44444444444447, 444444444444447, 4444444444444447, 44444444444444447, 444444444444444447, 4444444444444444447, 44444444444444444447, 444444444444444444447
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Cf. A173771 (primes).
Programs
-
Mathematica
LinearRecurrence[{11,-10},{7,47},30] (* or *) Table[FromDigits[ PadLeft[ {7},n,4]],{n,30}] (* Harvey P. Dale, Dec 27 2014 *)
-
PARI
a(n)=4*10^n\9+3 \\ Charles R Greathouse IV, Jan 11 2012
Formula
a(n) = 10*a(n-1) - 23 with n > 1, a(1) = 7.
a(n) = 11*a(n-1) - 10*a(n-2). G.f.: -x*(30*x-7)/((x-1)*(10*x-1)). [Colin Barker, Jan 24 2013]
E.g.f.: exp(x)*(4*exp(9*x) + 23)/9. - Elmo R. Oliveira, Sep 09 2024
Extensions
a(19)-a(21) from Elmo R. Oliveira, Sep 09 2024