A178769 a(n) = (5*10^n + 13)/9.
2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000.
- Bruno Berselli, A property that includes the numbers of the form 5..57.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
GAP
List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
-
Magma
[(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
-
Mathematica
CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *) LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
-
PARI
vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
-
Sage
[(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
Formula
a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024
Comments