cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A104889 Number of distinct prime divisors of 44...447 (with n 4s).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 4, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 1, 5, 4, 4, 4, 7, 1, 4, 2, 5, 3, 3, 3, 3, 3, 6, 4, 5, 3, 2, 3, 5, 6, 7, 4, 4, 4, 2, 5, 3, 3, 6, 4, 6, 2, 5, 3, 5, 3, 6, 4, 6, 4, 6, 3, 5, 6, 6, 4, 5, 2, 4, 7, 7, 3, 5, 3, 3, 3, 5, 4, 10, 5, 4, 3, 5, 3, 2, 4
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 24 2005

Keywords

Comments

Also number of distinct prime factors of (10^(n + 1) - 1)*4/9 + 3. - Stefan Steinerberger, Feb 21 2006

Examples

			Number of distinct prime divisors of 47 is 1 (prime).
Number of distinct prime divisors of 447 is 2.
Number of distinct prime divisors of 4447 is 1 (prime).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FactorInteger[(10^(n + 1) - 1)*4/9 + 3]], {n, 1, 40}] (* Stefan Steinerberger, Feb 21 2006 *)

Formula

a(n) = A001221(A173772(n+1)). - Amiram Eldar, Jan 27 2020

Extensions

More terms from Stefan Steinerberger, Feb 21 2006
Offset corrected and more terms added by Amiram Eldar, Jan 27 2020

A309609 Digits of the 10-adic integer (23/9)^(1/3).

Original entry on oeis.org

3, 6, 2, 9, 7, 6, 0, 4, 7, 4, 2, 3, 4, 9, 0, 2, 1, 6, 5, 5, 4, 5, 9, 7, 3, 3, 2, 6, 4, 9, 6, 0, 0, 6, 4, 9, 5, 3, 2, 3, 1, 9, 6, 3, 3, 0, 5, 6, 1, 1, 4, 7, 2, 3, 1, 6, 2, 5, 7, 9, 9, 7, 3, 5, 1, 0, 8, 4, 2, 0, 2, 6, 3, 1, 6, 8, 2, 6, 4, 8, 4, 3, 4, 5, 9, 5, 3, 8, 9, 8, 6, 5, 7, 9, 1, 7, 2, 7, 6, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       3^3 == 7      (mod 10).
      63^3 == 47     (mod 10^2).
     263^3 == 447    (mod 10^3).
    9263^3 == 4447   (mod 10^4).
   79263^3 == 44447  (mod 10^5).
  679263^3 == 444447 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((23/9+O(2^N))^(1/3), 2^N), Mod((23/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309609(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 23)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309609(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 23) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n

A173771 Primes of form (4*10^n+23)/9.

Original entry on oeis.org

3, 7, 47, 4447, 4444444447, 44444444444444444447, 44444444444444444444444447
Offset: 1

Views

Author

Vincenzo Librandi, Feb 24 2010

Keywords

Comments

a(9) has 1310 digits. - Bruno Berselli, Jul 26 2012

Crossrefs

Equals 3 followed by A092480 (primes of the form 40*R_n + 7). - Klaus Brockhaus and R. J. Mathar, Feb 27 2010
Cf. A056682.

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is (4*10^n+23)div 9 ]; // Vincenzo Librandi, Jul 26 2012
  • Mathematica
    Select[Table[(4*10^n+23)/9,{n,0,100}],PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)
Showing 1-4 of 4 results.