A173810 a(n) = (8*10^n - 71)/9 for n > 0.
1, 81, 881, 8881, 88881, 888881, 8888881, 88888881, 888888881, 8888888881, 88888888881, 888888888881, 8888888888881, 88888888888881, 888888888888881, 8888888888888881, 88888888888888881, 888888888888888881, 8888888888888888881, 88888888888888888881, 888888888888888888881
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Cf. A092675.
Programs
-
Magma
[(8*10^n-71)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
-
Maple
A173810:=n->(8*10^n-71)/9; seq(A173810(k), k=1..50); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
CoefficientList[Series[x(1+70*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *) LinearRecurrence[{11,-10},{1,81},30] (* Harvey P. Dale, Feb 20 2016 *)
Formula
a(n) = 10*a(n-1) + 71 for n > 0, a(0) = -7.
From Vincenzo Librandi, Jul 05 2012: (Start)
G.f.: x*(1+70*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2). (End)
E.g.f.: exp(x)*(8*exp(9*x) - 71)/9. - Elmo R. Oliveira, Sep 09 2024