A173812 a(n) = (8*10^n - 17)/9 for n > 0.
7, 87, 887, 8887, 88887, 888887, 8888887, 88888887, 888888887, 8888888887, 88888888887, 888888888887, 8888888888887, 88888888888887, 888888888888887, 8888888888888887, 88888888888888887, 888888888888888887, 8888888888888888887, 88888888888888888887, 888888888888888888887
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Cf. A093171.
Programs
-
Magma
[(8*10^n-17)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
-
Mathematica
CoefficientList[Series[(7+10*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *) Table[FromDigits[PadLeft[{7},n,8]],{n,20}] (* Harvey P. Dale, Jun 22 2013 *)
Formula
a(n) = 10*a(n-1) + 17 with n > 0, a(0)=-1.
From Vincenzo Librandi, Jul 05 2012: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
G.f.: x*(7+10*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 1 + exp(x)*(8*exp(9*x) - 17)/9. - Elmo R. Oliveira, Sep 09 2024