cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A105248 Number of distinct prime divisors of 88...887 (with n 8's).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 3, 3, 1, 2, 3, 1, 3, 4, 4, 4, 4, 2, 3, 3, 4, 3, 2, 3, 2, 2, 3, 5, 5, 4, 3, 4, 2, 5, 6, 2, 5, 3, 2, 3, 3, 3, 3, 3, 4, 2, 4, 2, 5, 2, 3, 5, 3, 6, 4, 5, 2, 5, 4, 3, 3, 3, 4, 2, 5, 4, 4, 5, 5, 4, 5, 1, 3, 6, 4, 2, 2, 4, 3, 4, 5, 7, 6, 5, 4, 8, 4
Offset: 0

Views

Author

Parthasarathy Nambi, Apr 29 2005

Keywords

Examples

			The number of distinct prime divisors of 87 is 2.
The number of distinct prime divisors of 887 is 1 (prime).
The number of distinct prime divisors of 8887 is 1 (prime).
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[(8*10^(n + 1) - 17)/9], {n, 1, 50}] (* G. C. Greubel, May 21 2017 *)
  • PARI
    a(n) = omega((8*10^(n+1)-17)/9); \\ Michel Marcus, Jan 27 2014

Formula

a(n) = A001221(A173812(n+1)). - Michel Marcus, Jan 27 2014

Extensions

More terms from Brian Lauer (bel136(AT)psu.edu), Feb 23 2006
Corrected and extended by Michel Marcus, Jan 27 2014
More terms from Amiram Eldar, Jan 27 2020
Showing 1-2 of 2 results.