A173927 Smallest integer k such that the number of iterations of Carmichael lambda function (A002322) needed to reach 1 starting at k (k is counted) is n.
1, 2, 3, 5, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 531441, 1594323, 4782969, 14348907, 43046721, 86093443, 258280327, 688747547
Offset: 1
Examples
for n=5, a(5)=11 gives a chain of length 5 because the trajectory is 11 -> 10 -> 4 -> 2 -> 1.
Links
- Nick Harland, The number of iterates of the Carmichael lambda function required to reach 1, arXiv:1203.4791v1 [math.NT], Mar 21 2012.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a173927 = (+ 1) . fromJust . (`elemIndex` map (+ 1) a185816_list) -- Reinhard Zumkeller, Sep 02 2014
-
Mathematica
f[n_] := Length@ NestWhileList[ CarmichaelLambda, n, Unequal, 2] - 1; t = Table[0, {30}]; k = 1; While[k < 2100000001, a = f@ k; If[ t[[a]] == 0, t[[a]] = k; Print[a, " = ", k]]; k++] (* slightly modified by Robert G. Wilson v, Sep 01 2014 *)
Extensions
a(20)-a(21) from Robert G. Wilson v, Sep 01 2014
Comments