cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173956 n-th primorial modulo n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 6, 0, 0, 0, 10, 0, 12, 0, 10, 0, 0, 0, 6, 20, 0, 3, 14, 0, 0, 0, 22, 0, 0, 0, 6, 0, 0, 0, 30, 0, 0, 0, 22, 30, 0, 0, 18, 21, 40, 0, 26, 0, 30, 0, 42, 0, 0, 0, 30, 0, 0, 42, 18, 0, 0, 0, 34, 0, 0, 0, 30, 0, 0, 60, 38, 0, 0, 0, 50, 12, 0, 0, 42, 0, 0, 0, 66, 0, 30, 0
Offset: 1

Views

Author

Carl R. White, Mar 03 2010

Keywords

Comments

Very similar to A076998.
For all n, a(A013929(n)) != 0, and a(A005117(n)) = 0. - Michel Marcus, Sep 03 2013 and Antti Karttunen, Nov 20 2017

Examples

			a(9) = p(9)# mod 9 = 23# mod 9 = 2*3*5*7*11*13*17*19*23 mod 9 = 6.
		

Crossrefs

Cf. A002110, A005117 (the positions of zeros).
Differs from A076998 for the first time at n=16, where a(16) = 10, while A076998(16) = 2.

Programs

  • Mathematica
    Array[Mod[Product[Prime@ i, {i, #}], #] &, 91] (* Michael De Vlieger, Nov 20 2017 *)
    Module[{nn=100,prlm},prlm=FoldList[Times,Prime[Range[nn]]];Mod[ #[[1]], #[[2]]]&/@ Thread[{prlm,Range[nn]}]] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    a(n) =  prod(i=1, n, prime(i)) % n; \\ Michel Marcus, Sep 03 2013

Formula

a(n) = A002110(n) mod n. - Michel Marcus, Sep 03 2013