A173958 Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1
Examples
Square array A(n,k) begins: 1, 2, 3, 4, 5, ... 1, 12, 75, 384, 1805, ... 1, 70, 1728, 31500, 508805, ... 1, 408, 39675, 2558976, 140503005, ... 1, 2378, 910803, 207746836, 38720000000, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..60, flattened
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210. - From _N. J. A. Sloane_, May 27 2012
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Path Graph
- Wikipedia, Kirchhoff's theorem
Crossrefs
Programs
-
Maple
with(LinearAlgebra): A:= proc(n, m) local M, i, j; if m=1 then 1 else M:= Matrix(n*m, shape=symmetric); for i to n do for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od; M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1 od; for i to n-1 do for j to m do M[m*(i-1)+j, m*i+j]:=-1 od od; for i to n*m do M[i,i]:= -add(M[i,j], j=1..n*m) od; Determinant(DeleteColumn(DeleteRow(M, 1), 1)) fi end: seq(seq(A(n, 1+d-n), n=1..d), d=1..9); # Crude Maple program from N. J. A. Sloane, May 27 2012: Digits:=200; T:=(m,n)->round(Re(evalf(simplify(expand( m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # Alternative program using the resultant: for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
-
Mathematica
t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)
Formula
A(n,k) = m*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1) [Kreweras]. - From N. J. A. Sloane, May 27 2012
Let T(n,x) and U(n,x) denote the Chebyshev polynomials of the first and second kind respectively. Let R(n,x) = 2*( T(n,(x + 2)/2) - 1 )/x (the row polynomials of A156308). Then the (n,k)-th element of the array equals k times the resultant (R(k,x), U(n-1,(2 - x)/2)). - Peter Bala, May 01 2014 [Corrected by Pontus von Brömssen, Apr 08 2025]
Comments