cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173958 Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1

Views

Author

Alois P. Heinz, Nov 26 2010

Keywords

Comments

Every row and every column of the array is a divisibility sequence, i.e., the terms satisfy the property that if n divides m then a(n) divides a(m) provided a(n) > 0. This follows from the representation of the elements of the array as a resultant. - Peter Bala, May 01 2014

Examples

			Square array A(n,k) begins:
  1,    2,      3,         4,           5,  ...
  1,   12,     75,       384,        1805,  ...
  1,   70,   1728,     31500,      508805,  ...
  1,  408,  39675,   2558976,   140503005,  ...
  1, 2378, 910803, 207746836, 38720000000,  ...
		

Crossrefs

Rows n=1-2 give: A000027, A006235.
Main diagonal gives A252767.
Cf. A156308.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(n, m) local M, i, j;
         if m=1 then 1 else
          M:= Matrix(n*m, shape=symmetric);
          for i to n do
            for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od;
            M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1
          od;
          for i to n-1 do
            for j to m do M[m*(i-1)+j, m*i+j]:=-1 od
          od;
          for i to n*m do
            M[i,i]:= -add(M[i,j], j=1..n*m)
          od;
          Determinant(DeleteColumn(DeleteRow(M, 1), 1))
         fi
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..9);
    # Crude Maple program from N. J. A. Sloane, May 27 2012:
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1))))));
    # Alternative program using the resultant:
    for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
  • Mathematica
    t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)

Formula

A(n,k) = m*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1) [Kreweras]. - From N. J. A. Sloane, May 27 2012
Let T(n,x) and U(n,x) denote the Chebyshev polynomials of the first and second kind respectively. Let R(n,x) = 2*( T(n,(x + 2)/2) - 1 )/x (the row polynomials of A156308). Then the (n,k)-th element of the array equals k times the resultant (R(k,x), U(n-1,(2 - x)/2)). - Peter Bala, May 01 2014 [Corrected by Pontus von Brömssen, Apr 08 2025]