A173973 Decimal expansion of Zeta[2,1/3] - 2*Pi^2/3.
3, 5, 1, 5, 8, 6, 0, 8, 5, 8, 0, 3, 4, 1, 8, 8, 3, 3, 5, 9, 0, 2, 3, 4, 3, 4, 3, 3, 3, 0, 8, 4, 1, 5, 6, 0, 3, 6, 4, 3, 1, 0, 4, 5, 1, 4, 4, 5, 3, 7, 8, 4, 3, 9, 0, 9, 9, 9, 4, 5, 0, 2, 8, 3, 3, 5, 0, 9, 9, 1, 4, 3, 0, 9, 3, 2, 2, 8, 1, 9, 8, 1, 4, 1, 7, 9, 1, 3, 0, 6, 8, 7, 4, 4, 9, 4, 4, 3, 7, 4, 5, 9, 4, 6, 9
Offset: 1
Examples
3.5158608...
Programs
-
Maple
Zeta(0,2,1/3)-2*Pi^2/3 ; evalf(%) ; # R. J. Mathar, Jun 17 2016
-
Mathematica
RealDigits[N[(Zeta[2, 1/3] - Zeta[2, 2/3])/2, 300]]
-
PARI
zetahurwitz(2,1/3)-2*Pi^2/3 \\ Charles R Greathouse IV, Jan 31 2018
Formula
Equals Zeta[2,1/3] - 2(Pi^2)/3 = 2(Pi^2)/3 - Zeta[2,2/3].
Extensions
Definition revised by N. J. A. Sloane, Aug 30 2011
Comments