cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003983 Array read by antidiagonals with T(n,k) = min(n,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Keywords

Comments

Also, "correlation triangle" for the constant sequence 1. - Paul Barry, Jan 16 2006
Antidiagonal sums are in A002620.
As a triangle, row sums are A002620. T(2n,n)=n+1. Diagonal sums are A001399. Construction: Take antidiagonal triangle of MM^T where M is the sequence array for the constant sequence 1 (lower triangular matrix with all 1's). - Paul Barry, Jan 16 2006
From Franklin T. Adams-Watters, Sep 25 2011: (Start)
As a triangle, count up to ceiling(n/2) and back down again (repeating the central term when n is even).
When the first two instances of each number are removed from the sequence, the original sequence is recovered.
(End)

Examples

			Triangle version begins
  1;
  1, 1;
  1, 2, 1;
  1, 2, 2, 1;
  1, 2, 3, 2, 1;
  1, 2, 3, 3, 2, 1;
  1, 2, 3, 4, 3, 2, 1;
  1, 2, 3, 4, 4, 3, 2, 1;
  1, 2, 3, 4, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a003983 n k = a003983_tabl !! (n-1) !! (k-1)
    a003983_tabl = map a003983_row [1..]
    a003983_row n = hs ++ drop m (reverse hs)
       where hs = [1..n' + m]
             (n',m) = divMod n 2
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    a(n) = min(floor(1/2 + sqrt(2*n)) - (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2+1, (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2) # Leonid Bedratyuk, Dec 13 2009
  • Mathematica
    Flatten[Table[Min[n-k+1, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Feb 23 2012 *)
  • PARI
    T(n,k) = min(n,k) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    from math import isqrt
    def A003983(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-(a*(a-1)>>1)
        return min(x,a-x+1) # Chai Wah Wu, Jun 14 2025

Formula

Number triangle T(n, k) = Sum_{j=0..n} [j<=k][j<=n-k]. - Paul Barry, Jan 16 2006
G.f.: 1/((1-x)*(1-x*y)*(1-x^2*y)). - Christian G. Bower, Jan 17 2006
a(n) = min(floor( 1/2 + sqrt(2*n)) - (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2+1, (2*n + round(sqrt(2*n)) - round(sqrt(2*n))^2)/2). - Leonid Bedratyuk, Dec 13 2009

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2000
Entry revised by N. J. A. Sloane, Dec 05 2006

A173982 a(n) = numerator of (Zeta(0,2,1/3) - Zeta(0,2,n+1/3)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 9, 153, 7641, 192789, 32757741, 525987081, 190358321841, 23076404893161, 577743530648769, 578407918658769, 556370890030917009, 160916328686946575601, 220439117509451225357769
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

All numbers in this sequence are divisible by 9.

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    A173982 := proc(n) add( 1/(1/3+i)^2,i=0..n-1) ; numer(%) ; end proc: seq(A173982(n),n=0..20) ; # R. J. Mathar, Apr 22 2010
  • Mathematica
    Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
    Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 9/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of 2*(Pi^2)/3 + J - Zeta(2,(3*n+1)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
A173982(n)/A173984(n) = sum_{i=0..n} 1/(1/3+i)^2 = 9*sum_{i=0..n} 1/(1+3i)^2 = psi'(1/3) - psi'(n+1/3). - R. J. Mathar, Apr 22 2010
a(n) = numerator of Sum_{k=0..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A173983 a(n) = numerator((Zeta(2, 1/3) - Zeta(2, n + 1/3))/9), where Zeta(n, z) is the Hurwitz Zeta function.

Original entry on oeis.org

0, 1, 17, 849, 21421, 3639749, 58443009, 21150924649, 2564044988129, 64193725627641, 64267546517641, 61818987781213001, 17879592076327397289, 24493235278827913928641, 24506988360923903264741
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

From Wolfdieter Lang, Nov 12 2017: (Start)
a(n+1)/A173984(n+1) gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(1+3*k)^2.
The limit n -> infinity is given in A214550 as the Hurwitz Zeta function or the Polygamma function (1/9)*Zeta(2, 1/3) = (1/9)*Psi(1, 1/3) = 1.121733... (End)

Examples

			The rationals a(n)/A173984(n) begin 0/1, 1/1, 17/16, 849/784, 21421/19600, 3639749/3312400, 58443009/52998400, 21150924649/19132422400, ... - _Wolfdieter Lang_, Nov 12 2017
		

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[1/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    a := n -> numer((Zeta(0,2,1/3) - Zeta(0,2,n+1/3))/9):
    seq(a(n), n=0..14); # Peter Luschny, Nov 12 2017
  • Mathematica
    Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]]/9, {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
    Numerator[Table[Sum[1/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of (1/9)(2(Pi^2)/3 + J - Zeta(2,(3n+1)/3)) where J is the constant A173973.
a(n) = numerator of Sum_{k=0..(n-1)} 1/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 12 2017

A173987 a(n) = denominator of ((Zeta(0,2,2/3) - Zeta(0,2,n+2/3))/9), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

1, 4, 100, 1600, 193600, 9486400, 2741569600, 2741569600, 1450290318400, 245099063809600, 206128312663873600, 3298053002621977600, 3298053002621977600, 1190597133946533913600, 2001393782164123508761600
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Denominator((&+[9/(3*k+2)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    a := n -> (Zeta(0,2,2/3) - Zeta(0,2,n+2/3))/9:
    seq(denom(a(n)), n=0..14); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[FunctionExpand[(1/9)*(4*(Pi^2)/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3])], {n, 0, 20}] // Denominator (* Vaclav Kotesovec, Nov 13 2017 *)
    Denominator[Table[Sum[9/(3*k + 2)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(denominator(9*sum(k=0,n-1, 1/(3*k+2)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = denominator of 2*(Pi^2)/3 - J - Zeta(2,(3*n+2)/3), where Zeta is the Hurwitz Zeta function and J is the constant A173973.
a(n) = denominator of Sum_{k=0..(n-1)} 9/(3*k+2)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A173984 a(n) is the denominator of (Zeta(0,2,1/3) - Zeta(0,2,n+1/3)) where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

1, 1, 16, 784, 19600, 3312400, 52998400, 19132422400, 2315023110400, 57875577760000, 57875577760000, 55618430227360000, 16073726335707040000, 22004931353582937760000, 22004931353582937760000
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Crossrefs

Programs

  • Magma
    [1,1] cat [Denominator((&+[9/(3*k+1)^2: k in [1..n-1]])): n in [2..20]]; // G. C. Greubel, Aug 24 2018
  • Maple
    a := n -> Zeta(0,2,1/3) - Zeta(0,2,n+1/3):
    seq(denom(a(n)), n=0..14); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]], {n, 0, 20}] // Denominator (* Vaclav Kotesovec, Nov 13 2017 *)
    Denominator[Table[Sum[9/(3*k + 1)^2, {k, 1, n - 1}], {n, 0, 30}]] (* G. C. Greubel, Aug 24 2018 *)
  • PARI
    for(n=0,20, print1(denominator(sum(k=1,n-1, 9/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 24 2018
    

Formula

a(n) = denominator of 2*(Pi^2)/3 + J - Zeta(2,(3*n+1)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
a(n) = denominator of Sum_{k=1..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 24 2018

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A173986 a(n) = numerator((Psi(1, 2/3) - Psi(1, n+2/3))/9), where Psi(1, z) is the Trigamma function.

Original entry on oeis.org

0, 1, 29, 489, 60769, 3026081, 884023809, 890877733, 474015890357, 80471258049933, 67921427083803253, 1089963588226225073, 1092655876391630769, 395273284628034202009, 665644988593672027490729
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

a(n+1)/A173987(n+1) gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(3*k+2)^2. The limit n -> infinity is given in A294967 as the Hurwitz Zeta function or the Trigamma function (1/9)*Zeta(2, 2/3) = (1/9)*Psi(1, 2/3) = 0.3404306010 ... - Wolfdieter Lang, Nov 12 2017

Examples

			The rationals a(n)/A173987(n) begin 0/1, 1/4, 29/100, 489/1600, 60769/193600, 3026081/9486400, 884023809/2741569600, 890877733/2741569600, ... - _Wolfdieter Lang_, Nov 12 2017
		

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[2/(3*k+2)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> (Psi(1, 2/3) - Psi(1, n+2/3))/9:
    seq(numer(simplify(r(n))), n=0..14); # Peter Luschny, Nov 13 2017
  • Mathematica
    Table[Numerator[FunctionExpand[(4*Pi^2/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3])/9]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[Sum[2/(3*k + 2)^2, {k, 0, n - 2}], {n, 1, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=0,n-2, 2/(3*k+2)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator(r(n)) with r(n) = (1/9)*(4*(Pi^2)/3 - Zeta(2, 1/3) - Zeta(2, (3*n+2)/3)) = (1/9)*(Zeta(2, 2/3) - Zeta(2, (3*n+2)/3)) with the Hurwitz Zeta function Zeta(2, q). This becomes the formula given in the name. - Wolfdieter Lang, Nov 13 2017
a(n) = numerator of (1/9)*(2(Pi^2)/3 - J - Zeta(2, (3n+2)/3)) where J is the constant A173973 [which becomes the preceding formula].
a(n) = numerator of Sum_{k=0..(n-2)} 2/(3*k+2)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 13 2017

A173985 a(n) = numerator of (Zeta(0,2,2/3) - Zeta(0,2,n+2/3)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 9, 261, 4401, 546921, 27234729, 7956214281, 8017899597, 4266143013213, 724241322449397, 611292843754229277, 9809672294036025657, 9833902887524676921, 3557459561652307818081, 5990804897343048247416561
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

All numbers in this sequence are divisible by 9.

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    A173985 := proc(n) add( 1/(2/3+i)^2,i=0..n-1) ; numer(%) ; end proc: seq(A173985(n),n=0..20) ; # R. J. Mathar, Apr 22 2010
  • Mathematica
    Table[FunctionExpand[4*(Pi^2)/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
    Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(numerator(9*sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of 2*(Pi^2)/3 - J - Zeta(2, (3*n+2)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
a(n)/A173987(n) = sum_{i=0..n-1} 1/(i+2/3)^2 = psi'(2/3)-psi'(2/3+n). - R. J. Mathar, Apr 22 2010
a(n) = numerator of Sum_{k=0..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A214552 Decimal expansion of the Dirichlet L-series of the non-principal character mod 6 evaluated at s=2.

Original entry on oeis.org

9, 7, 6, 6, 2, 8, 0, 1, 6, 1, 2, 0, 6, 0, 7, 8, 7, 1, 0, 8, 3, 9, 8, 4, 2, 8, 7, 0, 3, 0, 1, 1, 5, 4, 4, 5, 4, 5, 6, 4, 1, 7, 9, 2, 0, 6, 8, 1, 6, 0, 6, 7, 7, 5, 2, 7, 7, 6, 2, 5, 0, 7, 8, 7, 0, 8, 6, 0, 8, 7, 3, 0, 8, 1, 4, 5, 2, 2, 7, 7, 2, 6, 1, 6, 0, 8, 6, 9, 6, 3, 5, 4, 0, 2, 6, 2, 3, 2, 6, 2, 7, 6, 3, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

The non-principal character is A134667. The constant is sum_{n>=1} A134667(n)/n^s with s=2.

Examples

			0.97662801612060787108398...= 1/1^2 -1/5^2 +1/7^2 -1/11^2 + 1/13^2 -1/17^2 +-...
		

Crossrefs

Programs

  • Maple
    evalf( (Psi(1,1/6)-Psi(1,5/6))/36) ;
  • Mathematica
    RealDigits[ (PolyGamma[1, 1/6] - PolyGamma[1, 5/6])/36, 10, 105] // First  (* Jean-François Alcover, Feb 11 2013, after R. J. Mathar *)

Formula

Equals 2/3*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function. - Jean-François Alcover, Dec 16 2014, after R. J. Mathar.
Equals A173973 / 3.6 . - R. J. Mathar, Jun 02 2016

Extensions

More terms from Jean-François Alcover, Feb 11 2013
Showing 1-8 of 8 results.