cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173992 Sequence whose Hankel transform is the Somos (4) sequence.

Original entry on oeis.org

1, 1, 3, 6, 15, 34, 83, 198, 488, 1202, 3015, 7608, 19432, 49994, 129779, 339176, 892600, 2362634, 6288156, 16816232, 45170466, 121812152, 329679487, 895171236, 2437885058, 6657311202, 18224979884, 50006899724, 137502724754
Offset: 0

Views

Author

Paul Barry, Mar 04 2010

Keywords

Comments

Hankel transform is A006720(n+3). In general, the sequence with g.f. ((1-x)/(1-(r+1)*x))*c(x^2*(1-x)/(1-(r+1)*x)) will have a Somos (1,r) Hankel transform.
a(n) is the number of rooted plane 2-trees with integer compositions labeling the leaves (empty labels are allowed), with total size n. The total size is the number of edges in the tree plus the sum of the sizes of the integer compositions labeling the leaves. Example; a(2)=3 because there are two trees that consist of the root and no descendants, hence the root is itself a leaf and it can be labeled by either 2=2 or by 2=1+1, and then there is the tree that consists of the root with two descendants and no labels on the two leaves. - Ricardo Gómez Aíza, Feb 26 2024

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)))); // G. C. Greubel, Sep 25 2018
  • Maple
    with(LREtools): with(FormalPowerSeries): # requires Maple 2022
    ogf:=(1-2*x-sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)):
    req1:= FindRE(ogf,x,u(n)); inits:= {seq(u(i-1)=[1, 1, 3, 6, 15, 34][i],i=1..6)}:
    req2:= subs(n=n-4, MinimalRecurrence(req1,u(n),inits)[1]); # Mathar's recurrence
    a:= gfun:-rectoproc({req2} union inits, u(n), remember):
    seq(a(n),n=0..28); # Georg Fischer, Nov 03 2022
  • Mathematica
    A173992[n_] := Sum[CatalanNumber[k] Sum[Binomial[k + 1, i] Binomial[n - k - i, n - 2 k - i] (-1)^i Floor[2^(n - 2 k - i)], {i, 0, k + 1}], {k, 0, Floor[n/2]}] (* Eric Rowland, May 15 2017 *)
    CoefficientList[Series[(1-2*x -Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)])/(2*x^2* (1-2*x)), {x, 0, 50}], x] (* G. C. Greubel, Sep 25 2018 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k,k)/(k+1)*sum(i=0, k+1, binomial(k+1,i)*binomial(n-k-i,n-2*k-i)*(-1)^i*2^(n-2*k-i))); \\ Michel Marcus, May 15 2017
    
  • PARI
    x='x+O('x^50); Vec((1-2*x-((1-2*x)*(1-2*x-4*x^2+4*x^3))^(1/2))/(2*x^2*(1-2*x))) \\ Altug Alkan, Sep 25 2018
    

Formula

G.f.: ((1-x)/(1-2*x)) * c(x^2*(1-x)/(1-2*x)) = (1-2*x-sqrt((1-2x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2), A000108(k)*Sum_{i=0..k+1, C(k+1,i)*C(n-k-i,n-2k-i)*(-1)^i*2^(n-2k-i)}}.
D-finite with recurrence: (n+2)*a(n) -4*(n+1)*a(n-1) +4*a(n-2) +2*(6n-11)*a(n-3) +8*(3-n)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(2-5*c+4*c^2)/(2*c*(1-2*c)*sqrt(Pi*n^3))*(1/c)^n where c=(4+(1+i*sqrt(3))*(1+3*i*sqrt(111))^(1/3)+80/((sqrt(3)+i)^2*(1+3*i*sqrt(111))^(1/3)))/12. - Ricardo Gómez Aíza, Feb 26 2024