cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173993 Sequence whose Hankel transform is the Somos (4) sequence.

Original entry on oeis.org

1, 2, 6, 17, 50, 146, 430, 1267, 3746, 11091, 32900, 97716, 290586, 864980, 2577032, 7683397, 22922874, 68427057, 204362172, 610604629, 1825092080, 5457016431, 16321318264, 48828168580, 146112907266, 437319580738, 1309158060068
Offset: 0

Views

Author

Paul Barry, Mar 04 2010

Keywords

Comments

Hankel transform is A006720(n+3).

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    CoefficientList[Series[(Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)]-2*x^2+4*x-1)/( 2 x*(1 - 4 x + 3 x^2)), {x, 0, 50}], x] (* G. C. Greubel, Sep 22 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3))-2*x^2+4*x-1)/(2*x*(1-4*x+3*x^2))) \\ G. C. Greubel, Sep 22 2018
    

Formula

G.f.: (sqrt((1-2x)*(1-2x-4x^2+4x^3))-2x^2+4x-1)/(2x*(1-4x+3x^2)).
Conjecture: (n+1)*a(n) +2*(-4*n-1)*a(n-1) +(19*n-5)*a(n-2) -36*a(n-3) +8*(-7*n+26)*a(n-4) +2*(34*n-143)*a(n-5) +24*(-n+5)*a(n-6)=0. - R. J. Mathar, Oct 10 2014

A377264 Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).

Original entry on oeis.org

1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0

Views

Author

Thomas Scheuerle, Oct 22 2024

Keywords

Comments

Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
If we would change the start condition into d(0..4) = {1,1,-1,-2,(5/2)}, the expansion of the continued fraction generating function would give us A171416, its Hankel sequence transform is again A006720. There exist infinitely many sequences with the same Hankel sequence transform.

Crossrefs

The Hankel transform is directly related to A006720: A157002, A157003, A160702, A171416, A173992, A173993, A254314.

Programs

  • PARI
    d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
    a(n) = numerator(d(2*n+1))
    
  • PARI
    a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])

Formula

a(n) = A006720(n+1)*A006720(n+3).
denominator(d(2*n+1)) = A006720(n+2)^2.
-a(n)/A006720(n+3)^2 are the x-coordinates of (2*n+1) times [-1,0] on the curve y^2 - y = x^3 + 3*x^2 + 2*x. "Times" means here the multiplication under the elliptic group law.

A348593 Triangle read by rows: T(n,m) = Sum_{j=0..min(m,n-m)} C(2j,j)*C(n-2j-1,m-j)*C(n-m,j)/(j+1).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 1, 6, 7, 1, 1, 8, 18, 6, 1, 1, 10, 34, 30, 7, 1, 1, 12, 55, 88, 33, 8, 1, 1, 14, 81, 195, 145, 42, 9, 1, 1, 16, 112, 366, 460, 184, 52, 10, 1, 1, 18, 148, 616, 1146, 763, 248, 63, 11, 1, 1, 20, 189, 960, 2422, 2544, 1060, 324, 75, 12, 1, 1, 22, 235, 1413, 4558, 6916, 4282, 1490, 413, 88, 13, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Jan 25 2022

Keywords

Examples

			Triangle begins
  1;
  1;
  1,  2;
  1,  4,  1;
  1,  6,  7,  1;
  1,  8, 18,  6,  1;
  1, 10, 34, 30,  7,  1;
  1, 12, 55, 88, 33,  8,  1;
		

Crossrefs

Row sums give A173992.

Programs

  • Maxima
    T(n,m):=sum(binomial(2*j,j)*binomial(n-2*j-1,m-j)*binomial(n-m,j)/(j+1), j,0,min(m,n-m));

Formula

G.f.: (1-sqrt(1-4*x^2*y*(1-x*y)/(1-x-x*y)))/(2*x^2*y).
Sum_{m>=0} (-1)^m * T(n,m) = A307374(n). - Alois P. Heinz, Jan 26 2022
Showing 1-3 of 3 results.