cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174002 a(n) = n*binomial(n+4, 4).

Original entry on oeis.org

0, 5, 30, 105, 280, 630, 1260, 2310, 3960, 6435, 10010, 15015, 21840, 30940, 42840, 58140, 77520, 101745, 131670, 168245, 212520, 265650, 328900, 403650, 491400, 593775, 712530, 849555, 1006880, 1186680, 1391280, 1623160, 1884960, 2179485
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 05 2010, Mar 17 2010

Keywords

Comments

This sequence can be computed from Pascal's triangle. Find the fifth number in a row and multiply it by the second number of the next row. - Alonso del Arte, Jan 21 2018

Crossrefs

Programs

  • Magma
    [ (n^5+10*n^4+35*n^3+50*n^2+24*n)/24: n in [0..40] ]; // Vincenzo Librandi, Dec 28 2010
  • Mathematica
    Table[n Binomial[n + 4, 4], {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 5, 30, 105, 280, 630}, 40] (* Harvey P. Dale, Dec 03 2011 *)

Formula

a(n) = (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n) / 24.
For n > 0: a(n) = A003506(n+4, 5).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0)=0, a(1)=5, a(2)=30, a(3)=105, a(4)=280, a(5)=630. - Harvey P. Dale, Dec 03 2011
G.f.: 5*x/(1-x)^6. - Colin Barker, Mar 18 2012

Extensions

Title switched with first Formula section entry, at the suggestion of Alonso del Arte, by Jon E. Schoenfield, Jan 28 2018