cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174094 Number of ways to choose n positive integers less than or equal to 2n such that none of the n integers divides another.

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 6, 12, 10, 14, 26, 26, 34, 68, 48, 72, 120, 120, 168, 336, 264, 396, 792, 624, 816, 1632, 1632, 2208, 3616, 3616, 5056, 10112, 6592, 9888, 19776, 19776, 24384, 48768, 48768, 73152, 112320, 76032, 114048, 228096, 190080, 264960, 529920
Offset: 0

Views

Author

David Brown, Mar 07 2010

Keywords

Comments

a(n) >= 2^(1+floor((n-1)/3)). - Robert Israel, Aug 25 2015

Examples

			a(1) = 2 because we can choose {1}, {2}.
a(2) = 2 because we can choose {2, 3}, {3, 4}.
a(3) = 3 because we can choose {2, 3, 5}, {3, 4, 5}, {4, 5, 6}.
		

References

  • F. Caldarola, G. d'Atri, M.Pellegrini, Combinatorics on n-sets: Arithmetic properties and numerical results. In: Sergeyev Y., Kvasov D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science, vol. 11973. Springer, Cham, 389-401.

Crossrefs

The smallest n integers possible is A174063.

Programs

  • Maple
    F:= proc(S,m)
      option remember;
      local s,S1,S2;
      if nops(S) < m then return 0 fi;
      if m = 1 then return nops(S) fi;
      s:= min(S);
      S1:= S minus {s};
      S2:= S minus {seq(j*s,j=1..floor(max(S)/s))};
      F(S1, m) + F(S2, m-1);
    end proc;
    seq(F({$1..2*n},n), n=1..37); # Robert Israel, Aug 25 2015
  • Mathematica
    F[S_List, m_] := F[S, m] = Module[{s, S1, S2}, If[Length[S]Jean-François Alcover, Jul 10 2018, after Robert Israel *)

Extensions

More terms from David Brown, Mar 14 2010
a(30)-a(46) from Ray Chandler, Mar 19 2010
a(0)=1 prepended by Alois P. Heinz, Jun 24 2022