A174098 Symmetrical triangle T(n, m) = floor(Eulerian(n+1, m)/2), read by rows.
2, 5, 5, 13, 33, 13, 28, 151, 151, 28, 60, 595, 1208, 595, 60, 123, 2146, 7809, 7809, 2146, 123, 251, 7304, 44117, 78095, 44117, 7304, 251, 506, 23920, 227596, 655177, 655177, 227596, 23920, 506, 1018, 76318, 1101744, 4869057, 7862124, 4869057, 1101744, 76318, 1018
Offset: 2
Examples
Triangle begins as: 2; 5, 5; 13, 33, 13; 28, 151, 151, 28; 60, 595, 1208, 595, 60; 123, 2146, 7809, 7809, 2146, 123; 251, 7304, 44117, 78095, 44117, 7304, 251; 506, 23920, 227596, 655177, 655177, 227596, 23920, 506;
Links
- G. C. Greubel, Rows n = 2..100 of triangle, flattened
Programs
-
Magma
[[Floor((&+[(-1)^j*Binomial(n+2,j)*(k-j+1)^(n+1): j in [0..k+1]] )/2): k in [1..n-1]]: n in [2..12]]; // G. C. Greubel, Apr 25 2019
-
Mathematica
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}]; Table[Floor[Eulerian[n+1, m]/2], {n, 2, 12}, {m, 1, n-1}]//Flatten (* G. C. Greubel, Apr 25 2019 *)
-
PARI
{T(n,k) = (sum(j=0,k+1, (-1)^j*binomial(n+2,j)*(k-j+1)^(n+1)))\2}; for(n=2,12, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 25 2019
-
Sage
[[floor(sum((-1)^j*binomial(n+2,j)*(k-j+1)^(n+1) for j in (0..k+1))/2) for k in (1..n-1)] for n in (2..12)] # G. C. Greubel, Apr 25 2019
Formula
T(n, m) = floor(Eulerian(n+1, m)/2), where Eulerian(n,k) = A008292(n,k).
Extensions
Edited by G. C. Greubel, Apr 25 2019
Comments