cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174098 Symmetrical triangle T(n, m) = floor(Eulerian(n+1, m)/2), read by rows.

Original entry on oeis.org

2, 5, 5, 13, 33, 13, 28, 151, 151, 28, 60, 595, 1208, 595, 60, 123, 2146, 7809, 7809, 2146, 123, 251, 7304, 44117, 78095, 44117, 7304, 251, 506, 23920, 227596, 655177, 655177, 227596, 23920, 506, 1018, 76318, 1101744, 4869057, 7862124, 4869057, 1101744, 76318, 1018
Offset: 2

Views

Author

Roger L. Bagula, Mar 07 2010

Keywords

Comments

Row sums are: {2, 10, 59, 358, 2518, 20156, 181439, 1814398, 19958398, 239500796, 3113510398, 43589145596, 653837183996, ...}.

Examples

			Triangle begins as:
    2;
    5,     5;
   13,    33,     13;
   28,   151,    151,     28;
   60,   595,   1208,    595,     60;
  123,  2146,   7809,   7809,   2146,    123;
  251,  7304,  44117,  78095,  44117,   7304,   251;
  506, 23920, 227596, 655177, 655177, 227596, 23920, 506;
		

Crossrefs

Programs

  • Magma
    [[Floor((&+[(-1)^j*Binomial(n+2,j)*(k-j+1)^(n+1): j in [0..k+1]] )/2): k in [1..n-1]]: n in [2..12]]; // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
    Table[Floor[Eulerian[n+1, m]/2], {n, 2, 12}, {m, 1, n-1}]//Flatten (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    {T(n,k) = (sum(j=0,k+1, (-1)^j*binomial(n+2,j)*(k-j+1)^(n+1)))\2};
    for(n=2,12, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    [[floor(sum((-1)^j*binomial(n+2,j)*(k-j+1)^(n+1) for j in (0..k+1))/2) for k in (1..n-1)] for n in (2..12)] # G. C. Greubel, Apr 25 2019

Formula

T(n, m) = floor(Eulerian(n+1, m)/2), where Eulerian(n,k) = A008292(n,k).

Extensions

Edited by G. C. Greubel, Apr 25 2019