cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181722 Numerator of (1/n - Bernoulli number A164555(n)/A027642(n)).

Original entry on oeis.org

0, 0, 1, 1, 7, 1, 5, 1, 13, 1, 1, 1, 901, 1, -11, 1, 3647, 1, -43825, 1, 1222387, 1, -854507, 1, 1181821001, 1, -76977925, 1, 23749461059, 1, -8615841275543, 1, 28267510484519, 1
Offset: 1

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Comments

An autosequence is a sequence whose inverse binomial transform is the sequence signed. In integers, the oldest example is Fibonacci A000045. In fractions, A164555/A027642 is the son of 1/n via the Akiyama-Tanigawa algorithm; grandson is (A174110/A174111) = 1/2, 2/3, 1/2, 2/15, ...; see A164020. See A174341/A174342. All are from the same family.

Examples

			Fractions are 0, 0, 1/6, 1/4, 7/30, 1/6, 5/42, 1/8, 13/90, 1/10, 1/66, 1/12, 901/2730, ...
		

Crossrefs

Programs

  • Magma
    A181722:= func< n | n le 2 select 0 else Numerator(1/n - Bernoulli(n-1)) >;
    [A181722(n): n in [1..40]]; // G. C. Greubel, Mar 25 2024
    
  • Mathematica
    a[n_] := If[n <= 2, 0, Numerator[1/n - BernoulliB[n-1]]];
    Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 07 2017 *)
  • SageMath
    def A181722(n): return 0 if n<3 else numerator(1/n - bernoulli(n-1))
    [A181722(n) for n in range(1,41)] # G. C. Greubel, Mar 25 2024

A174129 Numerators of the first column of the table of fractions generated by the Akiyama-Tanigawa transform from a first row A164555(k)/A027642(k).

Original entry on oeis.org

1, 1, -1, -1, 31, 7, -1051, -201, 56911, 18311, -24346415, -4227881, 425739604981, 2082738855, -759610463437, -1935668684041, 91825384886337407, 3104887811293639, -333936446105326262497, -8039608511660213481, 496858217433153341005061
Offset: 0

Views

Author

Paul Curtz, Mar 09 2010

Keywords

Comments

The first 6 rows if the table generated by iterative application of the Akiyama-Tanigawa transform starting with a header row of fractions A164555(k)/A027642(k) are:
1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, ...
1/2, 2/3, 1/2, 2/15, -1/6, -1/7, 1/6, 4/15, -3/10, -25/33, 5/6, 1382/455, ...
-1/6, 1/3, 11/10, 6/5, -5/42, -13/7, -7/10, 68/15, 453/110, -175/11, ...
-1/2, -23/15, -3/10, 554/105, 365/42, -243/35, -1099/30, 548/165, 19827/110, ...
31/30, -37/15, -1171/70, -478/35, 469/6, 1247/7, -6153/22, -46708/33, ...
7/2, 599/21, -129/14, -38566/105, -20995/42, 211515/77, 524699/66, ...
The numerators of the leftmost column define the current sequence.

Crossrefs

Cf. A141056 (denominators), A174110, A174111 (first row).

Programs

  • Maple
    read("transforms3") ;
    A174129 := proc(n) Lin := [bernoulli(0),-bernoulli(1),seq(bernoulli(k),k=2..n+1)] ; for r from 1 to n do Lin := AKIYATANI(Lin) ; end do; numer(op(1,Lin)) ; end proc:
  • Mathematica
    a[0, k_] := a[0, k] = BernoulliB[k]; a[0, 1] = 1/2; a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); a[n_] := a[n, 0] // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 14 2012 *)

Formula

a(n) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022
Showing 1-2 of 2 results.