cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174123 Partial sums of A002893.

Original entry on oeis.org

1, 4, 19, 112, 751, 5404, 40573, 313408, 2471167, 19791004, 160459069, 1313922064, 10847561089, 90174127684, 754009158019, 6336733626112, 53489159252671, 453258909448636, 3854034482891725, 32871004555812112, 281127047928811201, 2410285909684370788
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}]] (* Harvey P. Dale, May 05 2013 *)
  • PARI
    a(n)=sum(m=0,n,sum(k=0,m,binomial(m,k)^2*binomial(2*k,k)))

Formula

a(n) = Sum_{i=0..n} A002893(i).
From Sergey Perepechko, Feb 16 2011: (Start)
O.g.f.: 2*sqrt(2)/Pi/(1-z)/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))* EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))).
9*(n+2)^2*a(n) - (99+86*n+19*n^2)*a(n+1) + (72+56*n+11*n^2)*a(n+2) - (n+3)^2*a(n+3)=0. (End)
a(n) ~ 3^(2*n + 7/2) / (32*Pi*n). - Vaclav Kotesovec, Jul 11 2016