A174124 Triangle T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1, read by rows.
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 40, 20, 1, 1, 30, 100, 100, 30, 1, 1, 42, 210, 350, 210, 42, 1, 1, 56, 392, 980, 980, 392, 56, 1, 1, 72, 672, 2352, 3528, 2352, 672, 72, 1, 1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1, 1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 12, 12, 1; 1, 20, 40, 20, 1; 1, 30, 100, 100, 30, 1; 1, 42, 210, 350, 210, 42, 1; 1, 56, 392, 980, 980, 392, 56, 1; 1, 72, 672, 2352, 3528, 2352, 672, 72, 1; 1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1; 1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Programs
-
Magma
c:= func< n,q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >; T:= func< n,k,q | c(n, q)/(c(k, q)*c(n-k, q)) >; [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
Mathematica
(* First program *) c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i,2,n}]]; T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]); Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* Second program *) T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))]; Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
Sage
def T(n,k,q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k))) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
Formula
Let c(n, q) = Product_{j=2..n} j*(j+q) for n > 2, otherwise 1, then the number triangle is given by T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) for q = 1.
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1.
Sum_{k=0..n} T(n, k, 1) = 2*A000108(n+1) - 2 + [n=0]. (End)
Extensions
Edited by G. C. Greubel, Feb 11 2021
Comments