cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174126 Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 36, 9, 1, 1, 16, 144, 144, 16, 1, 1, 25, 400, 900, 400, 25, 1, 1, 36, 900, 3600, 3600, 900, 36, 1, 1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1, 1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1, 1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 09 2010

Keywords

Comments

This triangle sequence is part of a class of triangles defined by T(n, k, q) = (n-k)^q * binomial(n-1, k-1)^q with T(n, 0) = T(n, n) = 1 and have row sums Sum_{k=0..n} T(n, k, q) = 2 - [n=0] + Sum_{k=1..n-1} k^q * binomial(n-1, k)^q. - G. C. Greubel, Feb 10 2021

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,    1;
  1,  4,    4,     1;
  1,  9,   36,     9,      1;
  1, 16,  144,   144,     16,      1;
  1, 25,  400,   900,    400,     25,      1;
  1, 36,  900,  3600,   3600,    900,     36,     1;
  1, 49, 1764, 11025,  19600,  11025,   1764,    49,    1;
  1, 64, 3136, 28224,  78400,  78400,  28224,  3136,   64,  1;
  1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1;
		

Crossrefs

Cf. A155865 (q=1), this sequence (q=2), A174127 (q=3).

Programs

  • Magma
    T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >;
    [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    (* First program *)
    c[n_]:= If[n<2, 1, Product[(i-1)^2, {i,2,n}]];
    T[n_, k_]:= c[n]/(c[k]*c[n-k]);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2021 *)
  • Sage
    def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
    

Formula

Let c(n) = Product_{i=2..n} (i-1)^2 for n > 2 otherwise 1. The number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)).
From G. C. Greubel, Feb 10 2021: (Start)
T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2 + A037966(n-1) - [n=0] = 2 + (n-1)^3*C_{n-2} - [n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. (End)

Extensions

Edited by G. C. Greubel, Feb 10 2021