A174128 Irregular triangle read by rows: row n (n > 0) is the expansion of Sum_{m=1..n} A001263(n,m)*x^(m - 1)*(1 - x)^(n - m).
1, 1, 1, 1, -1, 1, 3, -3, 1, 6, -4, -4, 2, 1, 10, 0, -20, 10, 1, 15, 15, -55, 15, 15, -5, 1, 21, 49, -105, -35, 105, -35, 1, 28, 112, -140, -266, 364, -56, -56, 14, 1, 36, 216, -84, -882, 756, 336, -504, 126, 1, 45, 375, 210, -2100, 672, 2520, -2100, 210, 210, -42
Offset: 1
Examples
Triangle begins 1; 1; 1, 1, -1; 1, 3, -3; 1, 6, -4, -4, 2; 1, 10, 0, -20, 10; 1, 15, 15, -55, 15, 15, -5; 1, 21, 49, -105, -35, 105, -35; 1, 28, 112, -140, -266, 364, -56, -56, 14; 1, 36, 216, -84, -882, 756, 336, -504, 126; ...
Links
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
- Michael Albert, Cheyne Homberger and Jay Pantone, Equipopularity Classes in the Separable Permutations, arXiv:1410.7312 [math.CO], 2014; see p. 13.
- Wikipedia, Hypergeometric function
Crossrefs
Programs
-
Mathematica
p[x_, n_]:= p[x, n]= Sum[(Binomial[n, j]*Binomial[n, j-1]/n)*x^j*(1-x)^(n-j), {j, 1, n}]/x; Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten
-
Sage
def p(n,x): return (1/(n*x))*sum( binomial(n,j)*binomial(n,j-1)*x^j*(1-x)^(n-j) for j in (1..n) ) def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) [T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
Formula
The n-th row of the triangle is generated by the coefficients of (1 - x)^(n - 1)*F(-n, 1 - n; 2; x/(1 - x)), where F(a, b ; c; z) is the ordinary hypergeometric function.
G.f.: (1 - y - sqrt(1 - 2*y + ((1 - 2*x)*y)^2))/(2*(1 - x)*x*y). - Franck Maminirina Ramaharo, Oct 23 2018
Extensions
Edited and new name by Joerg Arndt, Oct 28 2014
Comments and formula clarified by Franck Maminirina Ramaharo, Oct 23 2018
Comments