cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174128 Irregular triangle read by rows: row n (n > 0) is the expansion of Sum_{m=1..n} A001263(n,m)*x^(m - 1)*(1 - x)^(n - m).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 3, -3, 1, 6, -4, -4, 2, 1, 10, 0, -20, 10, 1, 15, 15, -55, 15, 15, -5, 1, 21, 49, -105, -35, 105, -35, 1, 28, 112, -140, -266, 364, -56, -56, 14, 1, 36, 216, -84, -882, 756, 336, -504, 126, 1, 45, 375, 210, -2100, 672, 2520, -2100, 210, 210, -42
Offset: 1

Views

Author

Roger L. Bagula, Mar 09 2010

Keywords

Comments

Row n gives the coefficients in the expansion of (1/x)*(1 - x)^n*N(n,x/(1 - x)), where N(n,x) is the n-th row polynomial for the triangle of Narayana numbers A001263.

Examples

			Triangle begins
    1;
    1;
    1,  1,  -1;
    1,  3,  -3;
    1,  6,  -4,   -4,    2;
    1, 10,   0,  -20,   10;
    1, 15,  15,  -55,   15,  15,  -5;
    1, 21,  49, -105,  -35, 105, -35;
    1, 28, 112, -140, -266, 364, -56,  -56,  14;
    1, 36, 216,  -84, -882, 756, 336, -504, 126;
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_]:= p[x, n]= Sum[(Binomial[n, j]*Binomial[n, j-1]/n)*x^j*(1-x)^(n-j), {j, 1, n}]/x;
    Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten
  • Sage
    def p(n,x): return (1/(n*x))*sum( binomial(n,j)*binomial(n,j-1)*x^j*(1-x)^(n-j) for j in (1..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    [T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021

Formula

The n-th row of the triangle is generated by the coefficients of (1 - x)^(n - 1)*F(-n, 1 - n; 2; x/(1 - x)), where F(a, b ; c; z) is the ordinary hypergeometric function.
G.f.: (1 - y - sqrt(1 - 2*y + ((1 - 2*x)*y)^2))/(2*(1 - x)*x*y). - Franck Maminirina Ramaharo, Oct 23 2018

Extensions

Edited and new name by Joerg Arndt, Oct 28 2014
Comments and formula clarified by Franck Maminirina Ramaharo, Oct 23 2018