A174371 a(n) = (6*n-1)^2.
1, 25, 121, 289, 529, 841, 1225, 1681, 2209, 2809, 3481, 4225, 5041, 5929, 6889, 7921, 9025, 10201, 11449, 12769, 14161, 15625, 17161, 18769, 20449, 22201, 24025, 25921, 27889, 29929, 32041, 34225, 36481, 38809, 41209, 43681, 46225, 48841, 51529
Offset: 0
Examples
a(0)=1 because (6*0-1)^2=1, a(1)=25 because (6*1-1)^2=25.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(6*n-1)^2: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
Mathematica
CoefficientList[Series[(49*x^2 + 22*x + 1)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 27 2013 *)
-
PARI
a(n)=(6*n-1)^2 \\ Charles R Greathouse IV, Jul 28 2016
Formula
a(n) = A016970(n-1), n >= 1.
G.f.: (49*x^2 + 22*x + 1)/(1 - x)^3. - Vincenzo Librandi, Jan 27 2013
a(n) = 6*A033579(n) + 1. - Miquel Cerda, Jul 28 2016
a(n) = 36n^2 - 12n + 1. - Omar E. Pol, Jul 28 2016
E.g.f.: exp(x)*(1 + 24*x + 36*x^2). - Stefano Spezia, Aug 19 2023
Extensions
Offset and formula corrected by R. J. Mathar, Apr 16 2010
Comments