A174382 T(1,0)=0 and for n > 1, T(n,k) is the number of k's in rows 1 to n - 1.
0, 1, 1, 1, 1, 3, 1, 4, 0, 1, 2, 6, 0, 1, 1, 3, 8, 1, 1, 1, 0, 1, 4, 12, 1, 2, 1, 0, 1, 0, 1, 6, 16, 2, 2, 2, 0, 1, 0, 1, 0, 0, 0, 1, 11, 19, 5, 2, 2, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 19, 22, 8, 2, 2, 1, 2, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 27, 28, 11, 2, 2, 1, 2, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1
Offset: 1
Examples
0; 1; # one zero 1,1; # one zero, one one 1,3; # one zero, three ones 1,4,0,1; # one zero, four ones, zero twos, one three
Links
- Reinhard Zumkeller, Rows n = 1..25 of table, flattened
Programs
-
Haskell
import Data.List (sort, group) a174382 n k = a174382_tabf !! (n-1) !! k a174382_row n = a174382_tabf !! (n-1) a174382_tabf = iterate f [0] where f xs = g (xs ++ [0, 0 ..]) [0..] (map head zs) (map length zs) where g _ [] = [] g (u:us) (k:ks) hs'@(h:hs) vs'@(v:vs) | k == h = u + v : g us ks hs vs | k /= h = u : g us ks hs' vs' zs = group $ sort xs -- Reinhard Zumkeller, Apr 06 2014
-
Maple
b:= proc(n) option remember; `if`(n<1, 0, b(n-1)+add(x^i, i=T(n))) end: T:= proc(n) option remember; `if`(n=1, 0, (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1))) end: seq(T(n), n=1..12); # Alois P. Heinz, Aug 25 2025
Comments