A174395 The number of different 4-colorings for the vertices of all triangulated planar polygons on a base with n vertices if the colors of two adjacent boundary vertices are fixed.
0, 2, 10, 40, 140, 462, 1470, 4580, 14080, 42922, 130130, 393120, 1184820, 3565382, 10717990, 32197660, 96680360, 290215842, 870997050, 2613690200, 7842468700, 23530202302, 70596199310, 211799782740, 635421717840, 1906309892762, 5719019156770, 17157236427280
Offset: 3
Examples
n=3 then a(3)=0 as there are no 4-colorings for the only triangle. n=4 then a(4)=2 as there are six good colorings less four 3-colorings for the two triangulated quadrilaterals (4-gons). n=5 then a(5)=10 as there are twenty good colorings less ten 3-colorings for the five triangulated pentagons.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-5,6).
Programs
-
Magma
[(3^n - 2^(n+2) + 6 + (-1)^n) / 12: n in [3..30]]; // Vincenzo Librandi, Sep 23 2013
-
Mathematica
CoefficientList[Series[-2 x/((x - 1) (x + 1) (2 x - 1) (3 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *) LinearRecurrence[{5,-5,-5,6},{0,2,10,40},30] (* Harvey P. Dale, Aug 29 2015 *)
-
PARI
Vec(-2*x^4/((x-1)*(x+1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Sep 22 2013
Formula
a(n) = (3^n - 2^(n+2) + 6 + (-1)^n) / 12.
a(n) = 5*a(n-1)-5*a(n-2)-5*a(n-3)+6*a(n-4). G.f.: -2*x^4 / ((x-1)*(x+1)*(2*x-1)*(3*x-1)). - Colin Barker, Sep 22 2013
Extensions
More terms from Colin Barker, Sep 22 2013
Comments