cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174396 Numbers congruent to {1,4,5,8} mod 9.

Original entry on oeis.org

1, 4, 5, 8, 10, 13, 14, 17, 19, 22, 23, 26, 28, 31, 32, 35, 37, 40, 41, 44, 46, 49, 50, 53, 55, 58, 59, 62, 64, 67, 68, 71, 73, 76, 77, 80, 82, 85, 86, 89, 91, 94, 95, 98, 100, 103, 104, 107, 109, 112, 113, 116, 118, 121, 122, 125, 127, 130, 131, 134, 136
Offset: 1

Views

Author

Gary Detlefs, Mar 18 2010

Keywords

Programs

  • Magma
    [(18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n) div 4))/8 : n in [1..100]]; // Wesley Ivan Hurt, Oct 17 2015
  • Maple
    seq(3*(n - floor(n/4)) + (-1)^floor(n/2), n=0..100);
  • Mathematica
    CoefficientList[Series[(1 + 3 x + x^2 + 3 x^3 + x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 17 2015 *)
    RecurrenceTable[{a[1] == 1, a[2] == 4, a[3] == 5, a[4] == 8, a[5] == 10 , a[n+5] == a[n+4] + a[n+1] - a[n] }, a, {n, 1, 100}] (* G. C. Greubel, Oct 18 2015 *)

Formula

a(n) = 3*(n-1-floor((n-1)/4)) + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Oct 17 2015: (Start)
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n)/4))/8. (End)
E.g.f.: (1/8)*(2*sin(x) - 2*cos(x) + 18*x*exp(x) + 3*exp(-x) - 9*exp(x) + 8). - G. C. Greubel, Oct 18 2015

Extensions

Formula corrected by Gary Detlefs, Mar 19 2010