A174396 Numbers congruent to {1,4,5,8} mod 9.
1, 4, 5, 8, 10, 13, 14, 17, 19, 22, 23, 26, 28, 31, 32, 35, 37, 40, 41, 44, 46, 49, 50, 53, 55, 58, 59, 62, 64, 67, 68, 71, 73, 76, 77, 80, 82, 85, 86, 89, 91, 94, 95, 98, 100, 103, 104, 107, 109, 112, 113, 116, 118, 121, 122, 125, 127, 130, 131, 134, 136
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[(18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n) div 4))/8 : n in [1..100]]; // Wesley Ivan Hurt, Oct 17 2015
-
Maple
seq(3*(n - floor(n/4)) + (-1)^floor(n/2), n=0..100);
-
Mathematica
CoefficientList[Series[(1 + 3 x + x^2 + 3 x^3 + x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 17 2015 *) RecurrenceTable[{a[1] == 1, a[2] == 4, a[3] == 5, a[4] == 8, a[5] == 10 , a[n+5] == a[n+4] + a[n+1] - a[n] }, a, {n, 1, 100}] (* G. C. Greubel, Oct 18 2015 *)
Formula
a(n) = 3*(n-1-floor((n-1)/4)) + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Oct 17 2015: (Start)
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n)/4))/8. (End)
E.g.f.: (1/8)*(2*sin(x) - 2*cos(x) + 18*x*exp(x) + 3*exp(-x) - 9*exp(x) + 8). - G. C. Greubel, Oct 18 2015
Extensions
Formula corrected by Gary Detlefs, Mar 19 2010