cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174405 Partial sums of Sum_{k=1..n} n/gcd(n,k), or partial sums of Sum_{d|n} d*phi(d) (see A057660).

Original entry on oeis.org

1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, 462, 619, 748, 895, 1066, 1339, 1522, 1865, 2096, 2397, 2730, 3237, 3538, 4059, 4530, 5077, 5550, 6363, 6804, 7735, 8418, 9195, 10014, 10917, 11588, 12921, 13950, 15049, 15952, 17593, 18496, 20303, 21524, 22805, 24326, 26489, 27686, 29787, 31350, 33261, 34988
Offset: 1

Views

Author

Jonathan Vos Post, Nov 27 2010

Keywords

Comments

The subsequence of primes in this sequence begins 11, 43, 107, 211, 619, 5077, 26489. The subsequence of squares in this sequence begins 1, 4, 64, 18496 = 2^6 * 17^2.

Examples

			a(9) = 1 + 3 + 7 + 11 + 21 + 21 + 43 + 43 + 61 = 211 is prime.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Accumulate @ Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
  • PARI
    a(n)=sum(k=1,n,sumdiv(k,d,eulerphi(d)*d)) \\ Charles R Greathouse IV, May 21 2014
    
  • PARI
    a(n) = sum(k=1, n, k * eulerphi(k) * (n\k)); \\ Michel Marcus, May 30 2018

Formula

a(n) = Sum_{i=1..n} A057660(i) = Sum_{i=1..n} Sum_{k=1..i} i/gcd(i,k) = Sum_{i=1..n} ( Sum_{d|i} A000010(d^2) ) = Sum_{i=1..n} ( Sum_{d|i} d*A000010(d) ) = Sum_{i=1..n} (sum of the orders of the elements in a cyclic group with i elements).
Riedel, and Sándor&Kramer give a(n) ~ 2/Pi^2 * zeta(3) * n^3. - Charles R Greathouse IV, May 21 2014; Günter Rote, Nov 03 2021
G.f.: (1/(1 - x))*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
a(n) = Sum_{k=1..n} k * phi(k) * floor(n/k), where phi(k) is the Euler totient function. - Daniel Suteu, May 30 2018