A174438 Numbers that are congruent to {0, 2, 5, 8} mod 9.
0, 2, 5, 8, 9, 11, 14, 17, 18, 20, 23, 26, 27, 29, 32, 35, 36, 38, 41, 44, 45, 47, 50, 53, 54, 56, 59, 62, 63, 65, 68, 71, 72, 74, 77, 80, 81, 83, 86, 89, 90, 92, 95, 98, 99, 101, 104, 107, 108, 110, 113, 116, 117, 119, 122, 125, 126, 128, 131, 134, 135, 137
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 9 in [0, 2, 5, 8]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
seq(3*(n-floor(n/4))-(3-I^n-(-I)^n-(-1)^n)/4, n=0..100);
-
Mathematica
Table[(18n-15+I^(2n)+(3-I)*I^(-n)+(3+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 07 2016 *) Select[Range[0,150],MemberQ[{0,2,5,8},Mod[#,9]]&] (* Harvey P. Dale, Jan 02 2019 *) LinearRecurrence[{1,0,0,1,-1},{0,2,5,8,9},70] (* Harvey P. Dale, Jan 15 2022 *)
-
Python
def A174438(n): return (0,2,5,8)[n&3]+9*(n>>2) # Chai Wah Wu, Jan 30 2023
Formula
a(n) = 3*(n-floor(n/4)) - (3 - i^n - (-i)^n - (-1)^n)/4 where i=sqrt(-1), offset=0.
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: x^2*(2 + 3*x + 3*x^2 + x^3)/((x-1)^2*(1 + x + x^2 + x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (18*n - 15 + i^(2*n) + (3-i)*i^(-n) + (3+i)*i^n)/8 where i=sqrt(-1). (End)
Extensions
a(23) corrected by Chai Wah Wu, Jun 10 2016
Comments