cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174441 Primes p such that the concatenations p//1331 and 1331//p are both prime numbers (for naturals see A174355).

Original entry on oeis.org

53, 347, 431, 641, 647, 821, 1709, 1973, 2081, 2591, 2657, 2963, 4073, 4139, 4643, 4787, 5039, 5483, 5657, 6029, 6791, 6917, 6959, 7127, 7673, 8273, 8693, 8807, 8849, 9221, 9311, 9689, 10139, 10457, 11423, 12503, 12743, 13619, 13913, 14549
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 20 2010

Keywords

Comments

See comments and references for A173836, A174213.

Examples

			531331 = prime(43928), 133153 = prime(12427) => p(1) = 53 = prime(16).
3471331 = prime(248286), 1331347 = prime(102237) => p(2) = 347 = prime(69).
139131331 = prime(7865788), 133113913 = prime(7544750) => p(39) = 13913 = prime(1645).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2000]],AllTrue[{#*10^4+1331,1331*10^IntegerLength[ #]+#}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 08 2016 *)
  • PARI
    isok(n) = isprime(n) && isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013