cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174465 G.f.: exp( Sum_{n>=1} A174466(n)*x^n/n ) where A174466(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 1, 4, 7, 19, 31, 74, 122, 258, 430, 835, 1378, 2557, 4162, 7382, 11932, 20471, 32676, 54634, 86251, 141001, 220371, 353413, 546783, 863043, 1322425, 2057525, 3125092, 4801297, 7230393, 10984924, 16410474, 24679719, 36593278, 54526145, 80272501
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to the g.f. of the number of planar partitions of n (A000219):
exp( Sum_{n>=1} sigma_2(n)*x^n/n ) where sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d).
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
    nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A007425[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,d*sigma(m/d)*sigma(d,0)))+x*O(x^n)),n)}

Formula

G.f.: Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k)). - Vaclav Kotesovec, Jan 04 2017
G.f.: Product_{k>=1} 1/(1 - x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018