cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A280473 G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k)).

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 43, 70, 127, 215, 364, 591, 989, 1562, 2515, 3954, 6194, 9538, 14754, 22349, 33926, 50910, 76102, 112721, 166747, 244205, 356984, 518344, 749924, 1078711, 1547668, 2207418, 3140135, 4446572, 6276657, 8823776, 12371487, 17275879, 24061878
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
    nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A007425[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 30 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018

A280487 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} 1/(1 - x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 9, 29, 49, 135, 235, 565, 995, 2177, 3821, 7900, 13728, 26974, 46606, 88128, 150644, 276283, 467647, 835708, 1400874, 2448818, 4065230, 6975307, 11470265, 19359345, 31552473, 52488142, 84808548, 139274675, 223191639, 362297234, 576064732, 925295844
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[tau4[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018

A305050 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 2, 8, 20, 56, 128, 316, 684, 1532, 3192, 6704, 13436, 26984, 52352, 101316, 191320, 359334, 662292, 1213360, 2189380, 3925432, 6951592, 12231332, 21298452, 36856840, 63211164, 107765896, 182295468, 306625208, 512190992, 851011960, 1405199028, 2308629300, 3771593392
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2018

Keywords

Comments

Convolution of the sequences A174465 and A280473.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^(i j k))/(1 - x^(i j k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007425(k).

A318413 Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(i*j*k).

Original entry on oeis.org

1, 1, 7, 16, 61, 130, 429, 945, 2684, 5990, 15530, 34313, 83995, 183070, 427046, 919480, 2067589, 4384678, 9577536, 20019243, 42664087, 87954522, 183573639, 373430131, 765524808, 1537737243, 3102614407, 6159028445, 12252086879, 24051526041, 47239506797, 91765428710, 178156003047
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}]  x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
    nmax = 50; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A034718[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ (3*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2. - Vaclav Kotesovec, Sep 02 2018

A321360 Expansion of Product_{1 <= i <= j <= k} 1/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 32, 44, 67, 91, 139, 186, 269, 362, 517, 686, 958, 1264, 1741, 2286, 3092, 4033, 5416, 7018, 9296, 11998, 15769, 20228, 26356, 33648, 43539, 55343, 71079, 89942, 114909, 144775, 183819, 230746, 291557, 364544, 458371, 571084, 714971, 887798, 1106704
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Crossrefs

Formula

Euler transform of A034836.
G.f.: Product_{k>0} 1/(1 - x^k)^A034836(k).

A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d).

Original entry on oeis.org

1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.
tau(n) = A000005(n) = the number of divisors of n,
and sigma(n) = A000203(n) = sum of divisors of n.
Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

Programs

  • Haskell
    a174466 n = sum $ zipWith3 (((*) .) . (*))
                      divs (map a000203 $ reverse divs) (map a000005 divs)
                      where divs = a027750_row n
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [&+[d*DivisorSigma(1, n div d)*#Divisors(d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    f[p_, e_] := ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d,0))}
    

Formula

Logarithmic derivative of A174465.
Dirichlet g.f.: zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011
a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. - Enrique Pérez Herrero, Jan 17 2013
G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018
Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = ((e^2+3*e+2)*p^(e+3) - 2*(e^2+4*e+3)*p^(e+2) + (e^2+5*e+6)*p^(e+1) - 2)/(2*(p-1)^3). - Amiram Eldar, May 26 2025

A304965 Expansion of Product_{k>=1} 1/(1 - x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767).

Original entry on oeis.org

1, 1, 3, 6, 19, 30, 96, 152, 461, 775, 1883, 3271, 8751, 14370, 34004, 59491, 140450, 239746, 541817, 932681, 2089189, 3606641, 7719178, 13398411, 28848808, 49603982, 103047935, 179154858, 370200348, 639269735, 1295389370, 2241994088, 4511677298, 7798101800, 15408901600
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Euler transform of A163767.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          A(d$2), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 - x^k)^Times@@(Binomial[# + k - 1, k - 1]&/@FactorInteger[k][[All, 2]]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Times@@(Binomial[# + d - 1, d - 1]&/@FactorInteger[d][[All, 2]]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A163767(k).

A174467 G.f.: exp( Sum_{n>=1} A174468(n)*x^n/n ) where A174468(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).

Original entry on oeis.org

1, 1, 5, 10, 31, 58, 157, 299, 711, 1367, 2987, 5679, 11807, 22117, 44006, 81513, 156885, 286413, 537058, 967367, 1773882, 3155223, 5677183, 9976095, 17661695, 30682683, 53544796, 92037152, 158575796, 269850363, 459636546, 774851829
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Crossrefs

Cf. A174465, A000203 (sigma).

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,d*sigma(m/d)*sigma(d)))+x*O(x^n)),n)}

Formula

From Ricardo Gómez Aíza, Mar 08 2023: (Start)
E.g.f.: Product_{n>=1,m>=1,k>=1} 1 / (1 - x^(n * m * k))^n.
log(a(n) / n!) ~ (3/2) * (Zeta(3) * Pi^4 / 18)^(1/3) * n^(2/3). (End)

A304963 Expansion of 1/(1 - Sum_{i>=1, j>=1, k>=1} x^(i*j*k)).

Original entry on oeis.org

1, 1, 4, 10, 31, 82, 241, 664, 1898, 5316, 15058, 42374, 119718, 337432, 952373, 2685906, 7578248, 21376331, 60306495, 170120330, 479922212, 1353855927, 3819280961, 10774233218, 30394408336, 85743168417, 241883489742, 682358211402, 1924947591447, 5430317571250, 15319043353639
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A007425.

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(A(j, 3)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(1 - Sum[x^(i j k), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}]), {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[1/(1 - Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A007425(k)*x^k).

A319359 Expansion of Product_{i>=1, j>=1, k>=1} (1 - x^(i*j*k)).

Original entry on oeis.org

1, -1, -3, 0, 0, 9, 5, 4, -1, -27, -2, -33, -17, 8, 43, 92, 36, 100, -8, -11, -136, -120, -296, -363, -13, -203, 286, 306, 1010, 667, 724, 790, 151, -258, -1207, -964, -3325, -2059, -2924, -1992, -2116, 1277, 3625, 4437, 7724, 7734, 11524, 5801, 9685, -855, -2799, -13409, -16423
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1-x^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,53): seq(coeff(a,x,n),n=0..52); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 - x^(i j k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Product[(1 - x^k)^Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[d DivisorSigma[1, k/d] DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: Product_{k>=1} (1 - x^k)^A007425(k).
G.f.: exp(-Sum_{k>=1} A174466(k)*x^k/k).
Showing 1-10 of 12 results. Next