cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318413 Expansion of Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(i*j*k).

Original entry on oeis.org

1, 1, 7, 16, 61, 130, 429, 945, 2684, 5990, 15530, 34313, 83995, 183070, 427046, 919480, 2067589, 4384678, 9577536, 20019243, 42664087, 87954522, 183573639, 373430131, 765524808, 1537737243, 3102614407, 6159028445, 12252086879, 24051526041, 47239506797, 91765428710, 178156003047
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(i*j*k),k=1..55),j=1..55),i=1..55),x=0,33): seq(coeff(a,x,n),n=0..32); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 32; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(i j k), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[Exp[Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}]  x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
    nmax = 50; A034718 = Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A034718[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*tau_3(k)), where tau_3() = A007425.
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^2 * Sum_{j|d} tau(j) ) * x^k/k), where tau() = A000005.
Conjecture: log(a(n)) ~ (3*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2. - Vaclav Kotesovec, Sep 02 2018

A174468 a(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).

Original entry on oeis.org

1, 9, 16, 53, 36, 144, 64, 261, 178, 324, 144, 848, 196, 576, 576, 1173, 324, 1602, 400, 1908, 1024, 1296, 576, 4176, 986, 1764, 1744, 3392, 900, 5184, 1024, 5013, 2304, 2916, 2304, 9434, 1444, 3600, 3136, 9396, 1764, 9216, 1936, 7632, 6408, 5184, 2304
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Logarithmic derivative of A174467.
Dirichlet convolution of A064987 and A000203. - R. J. Mathar, Feb 06 2011

Crossrefs

Cf. A174467, A000203 (sigma), A064987.

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[1,d]*DivisorSigma[1,n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
    f[p_, e_] := (p^(2*e + 4) - (e + 2)*(p^2 - 1)*p^(e + 1) - 1)/((p - 1)^3*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    {a(n)=sumdiv(n,d,d*sigma(n/d)*sigma(d))}
    
  • PARI
    a(n)=sumdiv(n, x, x * sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */

Formula

a(n) = sigma(n)^2 iff n is squarefree.
Dirichlet g.f. zeta(s) * (zeta(s-1))^2 * zeta(s-2). - R. J. Mathar, Feb 06 2011
Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^3 / 108. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(p^e) = (p^(2*e+4) - (e+2)*(p^2-1)*p^(e+1) - 1)/((p-1)^3*(p+1)). - Amiram Eldar, Aug 27 2023
Showing 1-2 of 2 results.