A174531 Coefficients of polynomials described below.
1, 1, 3, 4, 2, 4, 5, 25, 32, 3, 19, 32, 7, 77, 294, 384, 4, 52, 240, 384, 9, 174, 1323, 4614, 6144, 5, 110, 967, 3934, 6144, 11, 330, 4169, 27258, 90992, 122880, 6, 200, 2842, 21040, 79832, 122880, 13, 559, 10569, 110513, 664898, 2161848, 2949120, 7, 329, 6867, 79687, 533630, 1935048
Offset: 1
Keywords
Examples
Sequence of the polynomials begins: P_1 = 1, P_2 = 1, P_3 = 3*k + 4, P_4 = 2*k + 4, P_5 = 5*k^2 + 25*k + 32, P_6 = 3*k^2 + 19*k + 32, P_7 = 7*k^3 + 77*k^2 + 294*k + 384, P_8 = 4*k^3 + 52*k^2 + 240*k + 384, P_9 = 9*k^4 + 174*k^3 + 1323*k^2 + 4614*k + 6144, P_10 = 5*k^4 + 110*k^3 + 967*k^2 + 3934*k + 6144, P_11 = 11*k^5 + 330*k^4 + 4169*k^3 + 27258*k^2 + 90992*k + 122880, P_12 = 6*k^5 + 200*k^4 + 2842*k^3 + 22040*k^2 + 79832*k + 122880, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2550
- V. Shevelev and P. Moses, On a sequence of polynomials with hypothetically integer coefficients, arXiv:1112.5715 [math.NT], 2011.
- V. Shevelev and P. Moses, On a sequence of polynomials with hypothetically integer coefficients, INTEGERS, V.13 (2013) Article #A9, 1-29.
Programs
-
Maple
B := proc(x,n) mul((x-i+1)/i,i=1..n) ; expand(%) ; end proc: A174531p := proc(n,x) if n = 1 or n =2 then 1; elif type(n,'odd') then thalf := (n-1)/2 ; (x+n-1)*procname(n-1,x)+(2*x+n)*procname(n-1,x+1)/2 + (4*x+n-1)*(thalf-1)!*B(x+thalf-1,thalf-1)/4 ; else thalf := (n-2)/2 ; (x+n-1)*procname(n-1,x)/(4*x+2*n-2) +procname(n-1,x+1)/4 + (4*x+n-1)*thalf!*B(x+thalf,thalf)/(8*x+4*n-4) ; fi ; expand(%) ; factor(%) ; expand(%) ; end proc: for n from 1 to 14 do for k from floor((n-1)/2) to 0 by -1 do printf("%d,",coeftayl(A174531p(n,x),x=0,k)) ; end do: end do: # R. J. Mathar, Sep 27 2011
-
Mathematica
p[1,k_]:=1; p[2,k_]:=1; p[t_?OddQ,k_]:=p[t,k]=Expand[Factor[FunctionExpand[(k+t-1) p[t-1,k]+1/2 (2 k+t) p[t-1,k+1]+1/4 (4 k+t-1) (1/2 (t-3))! Binomial[1/2 (2 k+t-3),1/2 (t-3)]]]]; p[t_?EvenQ,k_]:=p[t,k]=Expand[Factor[FunctionExpand[((k+t-1) p[t-1,k])/(4 k+2 (t-1))+1/4 p[t-1,k+1]+((4 k+t-1) (1/2 (t-2))! Binomial[k+t/2-1,1/2 (t-2)])/(8 k+4 (t-1))]]]; A174531=Flatten[Table[Reverse[CoefficientList[p[n,k],k]],{n,1,14}]] (* Peter J. C. Moses, Sep 28 2011 *)
-
PARI
P(n)={ n<3 & return(k->1); if( n%2, k-> (k+n-1)*P(n-1)(k)+(1/2)*(2*k+n)*P(n-1)(k+1)+(1/4)*(4*k+n-1)*((n-3)/2)!*binomial(k+(n-3)/2,(n-3)/2), k-> ((k+n-1)/(4*k+2*n-2))*P(n-1)(k)+(1/4)*P(n-1)(k+1)+((4*k+n-1)/(8*k+4*n-4))*(n/2-1)!* binomial(k+n/2-1,n/2-1))} for(n=1,19,print(P(n)(k))) /* or, to list coefficients: */ for(n=1,19,apply(t->print1(t","),Vec(P(n)(k)));print) \\ M. F. Hasler, Sep 27 2011
Formula
From Vladimir Shevelev, Oct 11 2011: (Start)
P_n(k) = c_n(k)*(2^(n+k-1) - R_k(n)/(2k-2)!!), where c_n(k) = ((n-1)/2)!*Product_{i=1..k-1} (n+i)/(n+2i), if n is odd,
c_n(k) = (1/2)*((n-2)/2)!*Product_{i=0..k-1} (n+i)/(n+2i+1), if n is even, and R_k(n), k=0,1,..., are polynomials in n of degree k-1 (for k >= 1) with integer coefficients, defined by the recursion R_0(n)=0, R_1(n)=1, and for k >= 1, R_(k+1)(n) = 4*k*(R_k(n+1) - R_k(n)) + (n+4k)*Product_{i=1..k-1} (n+k+i).
The sequence of polynomials R's for k >= 0 begins: 0, 1, n+4, n^2 + 11*n + 32, n^3 + 21*n^2 + 152*n + 384, n^4 + 34*n^3 + 443*n^2 + 2642*n + 6144, ... This formula proves the conjecture of V. Shevelev for P_n(0) and P. Moses for P_n(1). (End)
Formula for positive argument k: P_n(k) = ((n-1)/2)! * binomial((n-1)/2+k-1,k-1) / binomial(n+2*k-2,k-1) * T_n(k), if n is odd; P_n(k) = (n/2-1)! * binomial(n/2+k-1,k) / binomial(n+2*k-1,k) * T_n(k), if n is even, where T_n(k) = Sum_{i=1..n} * 2^(i-1) * binomial(n+2*k-i-1,k-1). - Vladimir Shevelev, Oct 23 2011
For even n >= 4, P_n(x) = (n+x-1)*P_(n-2)(x+1) + (x - 1 + n/2)*(x - 2 + n/2)...(x+1); for odd n >= 3, P_n(x) = 2(n + x - 1)*P_(n-1)(x) + (x - 1 + (n-1)/2)*(x - 2 + (n-1)/2)...x. These formulas yield the integrality of all coefficients of P_n(x). - Vladimir Shevelev and Peter J. C. Moses, Dec 03 2011
Formula for negative argument: P_n(-m) = 2^(n-2m-1) * binomial(n-m-1,m-1)/binomial((n-2)/2,m-1) * ((n-2)/2)!, if n is even and 0 < m <= (n-2)/2; P_n(-m) = 2^(n-2m-1) * (binomial(n-m-1,m)/binomial((n-1)/2,m)) * ((n-1)/2)!, if n is odd and 0 < m <= (n-1)/2. It is interesting that this formula is significantly simpler than the above formula for positive arguments. - Vladimir Shevelev, Feb 14 2013; edited by Joerg Arndt and M. F. Hasler, Feb 23 2013
Extensions
Coefficients of P_12 corrected by D. S. McNeil, Sep 27 2011
Comments