cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174625 Table T(n,k) with the coefficients of the polynomial P_n(x) = P_{n-1}(x) + x*P_{n-2}(x) + 1 in row n, by decreasing exponent of x.

Original entry on oeis.org

0, 2, 3, 2, 4, 5, 5, 2, 9, 6, 7, 14, 7, 2, 16, 20, 8, 9, 30, 27, 9, 2, 25, 50, 35, 10, 11, 55, 77, 44, 11, 2, 36, 105, 112, 54, 12, 13, 91, 182, 156, 65, 13, 2, 49, 196, 294, 210, 77, 14, 15, 140, 378, 450, 275, 90, 15, 2, 64, 336, 672, 660, 352, 104, 16, 17, 204, 714, 1122, 935, 442
Offset: 1

Views

Author

Vladimir Shevelev, Mar 24 2010

Keywords

Comments

The polynomials are defined by the recurrence starting with P_1(x)=0, P_2(x)=2.
The degree of the polynomial (row length minus 1) is A004526(n-2).
All coefficients of P_n are multiples of n iff n is prime.
Apparently a mirrored version of A157000. [R. J. Mathar, Nov 01 2010]

Examples

			The table starts
0; # 0
2; # 2
3; # 3
2,4; # 4+2*x
5,5; # 5+5*x
2,9,6; # 6+9*x+2*x^2
7,14,7; # 7+14*x+7*x^2
2,16,20,8; # 8+20*x+16*x^2+2*x^3
9,30,27,9; # 9+27*x+30*x^2+9*x^3
2,25,50,35,10; # 10+35*x+50*x^2+25*x^3+2*x^4
11,55,77,44,11; # 11+44*x+77*x^2+55*x^3+11*x^4
		

Crossrefs

Programs

  • Mathematica
    p[0]:=0 p[1]:=2; p[n_]:=p[n]=Expand[p[n-1] +x p[n-2]+1]; Flatten[{0, Map[Reverse[CoefficientList[#,x]]&, Table[Expand[p[n]], {n,0,20}]]}] (* Peter J. C. Moses, Aug 18 2013 *)

Extensions

Definition rephrased, sequence extended, keyword:tabf, examples added R. J. Mathar, Nov 01 2010

A185139 Triangle T(n,k) = Sum_{i=1..n} 2^(i-1)*C(n+2*k-i-1, k-1), 1 <= k <= n.

Original entry on oeis.org

1, 3, 10, 7, 25, 91, 15, 56, 210, 792, 31, 119, 456, 1749, 6721, 63, 246, 957, 3718, 14443, 56134, 127, 501, 1969, 7722, 30251, 118456, 463828, 255, 1012, 4004, 15808, 62322, 245480, 966416, 3803648, 511, 2035, 8086, 32071, 127024, 502588, 1987096, 7852453, 31020445, 1023, 4082, 16263
Offset: 1

Views

Author

Keywords

Comments

The first term of the m-th row is 2^m-1.

Examples

			Triangle begins
1,
3,     10,
7,     25,    91,
15,    56,    210,  792,
31,    119,   456,  1749,  6721,
63,    246,   957,  3718,  14443,  56134,
127,   501,   1969, 7722,  30251,  118456, 463828,
255,   1012,  4004, 15808, 62322,  245480, 966416,  3803648,
511,   2035,  8086, 32071, 127024, 502588, 1987096, 7852453, 31020445,
...
		

Crossrefs

Cf. A174531.

Programs

  • Mathematica
    Table[Sum[2^(j - 1)*Binomial[n + 2*k - j - 1, k - 1], {j, 1, n}], {n,
       1, 50}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 23 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1(sum(j=1,n, 2^(j-1)*binomial(n+2*k-j-1,k-1)), ", "))) \\ G. C. Greubel, Jun 23 2017

Formula

2*T_n(k) = T_(n-1)(k+1) + C(n+2*k-1,k).
T_n(k) = T_(n-2)(k+1) + C(n+2*k-1,k).
T_n(k) = 2*T_(n-1)(k) + C(n+2*k-2,k-1).
T_n(k+1) = 4*T_n(k) - (n/k)*C(n+2*k-1,k-1).

A195609 Numbers n such that Sum_{i=1..n} A(i) = A(n)*A(n+1)/4, where A(n) = A000069(n).

Original entry on oeis.org

3, 4, 5, 9, 15, 16, 17, 23, 27, 28, 29, 33, 39, 43, 44, 45, 51, 52, 53, 57, 63, 64, 65, 71, 75, 76, 77, 83, 84, 85, 89, 95, 99, 100, 101, 105, 111, 112, 113, 119, 123, 124, 125, 129, 135, 139, 140, 141, 147, 148, 149, 153, 159, 163, 164, 165, 169, 175, 176
Offset: 1

Views

Author

Vladimir Shevelev, Sep 21 2011

Keywords

Comments

Conjectures: 1) there are only 3 different first differences 1,4,6; 2) the sequence contains either isolated series of terms, e.g., {9},{23},{33},{39},..., or series of 3 consecutive integers, e.g., {3,4,5}, {15,16,17}, etc.; 3)the first terms m of every series satisfy the condition A(m+1)-A(m-1)=5, where A(n)=A000069(n).

Crossrefs

Programs

  • Mathematica
    a = Select[Range[1000], OddQ[DigitCount[#, 2][[1]]] &]; t = {}; s = 0; Do[s = s + a[[n]]; If[s == a[[n]] a[[n + 1]]/4, AppendTo[t, n]], {n, Length[a] - 1}]; t (* T. D. Noe, Sep 23 2011 *)
Showing 1-3 of 3 results.