A174542 Partial sums of odd Fibonacci numbers (A014437).
1, 2, 5, 10, 23, 44, 99, 188, 421, 798, 1785, 3382, 7563, 14328, 32039, 60696, 135721, 257114, 574925, 1089154, 2435423, 4613732, 10316619, 19544084, 43701901, 82790070, 185124225, 350704366, 784198803, 1485607536, 3321919439, 6293134512, 14071876561
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,1,-1).
Programs
-
Magma
&cat[[(1/2)*(Fibonacci(3*n+2)-1), (1/2)*(Fibonacci(3*n+1)+Fibonacci(3*n+3)-1)]: n in [1..30]]; // Vincenzo Librandi, Oct 27 2014
-
Mathematica
s=0;lst={};Do[f=Fibonacci[n];If[OddQ[f],AppendTo[lst,s+=f]],{n,0,5!}];lst CoefficientList[Series[(x^3 - x^2 + x + 1)/((x - 1) (x^4 + 4 x^2 - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 27 2014 *) Accumulate[Select[Fibonacci[Range[50]],OddQ]] (* or *) LinearRecurrence[{1,4,-4,1,-1},{1,2,5,10,23},40] (* Harvey P. Dale, Sep 05 2023 *)
-
PARI
Vec(x*(x^3-x^2+x+1)/((x-1)*(x^4+4*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 26 2014
Formula
a(2n) = (1/2)*(Fibonacci(3n+2)-1).
a(2n+1) = (1/2)*(Fibonacci(3n+1)+Fibonacci(3n+3)-1).
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)+a(n-4)-a(n-5) for n>4. - Colin Barker, Oct 26 2014
G.f.: x*(x^3-x^2+x+1) / ((x-1)*(x^4+4*x^2-1)). - Colin Barker, Oct 26 2014
From Vladimir Reshetnikov, Oct 30 2015: (Start)
a(n) = ((sin(Pi*n/2)*sqrt(5/phi) - cos(Pi*n/2)/phi^2)/phi^(3*n/2) + (sqrt(5*phi)*sin(Pi*n/2)^2 + phi^2*cos(Pi*n/2)^2)*phi^(3*n/2))/(2*sqrt(5)) - 1/2, where phi=(1+sqrt(5))/2.
E.g.f.: phi^2*cosh(phi^(3/2)*x)/(2*sqrt(5)) + sqrt(phi)*sinh(phi^(3/2)*x)/2 - cos(x/phi^(3/2))/(2*sqrt(5)*phi^2) + sin(x/phi^(3/2))/(2*sqrt(phi)) - exp(x)/2.
(End)