cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174542 Partial sums of odd Fibonacci numbers (A014437).

Original entry on oeis.org

1, 2, 5, 10, 23, 44, 99, 188, 421, 798, 1785, 3382, 7563, 14328, 32039, 60696, 135721, 257114, 574925, 1089154, 2435423, 4613732, 10316619, 19544084, 43701901, 82790070, 185124225, 350704366, 784198803, 1485607536, 3321919439, 6293134512, 14071876561
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    &cat[[(1/2)*(Fibonacci(3*n+2)-1), (1/2)*(Fibonacci(3*n+1)+Fibonacci(3*n+3)-1)]: n in [1..30]]; // Vincenzo Librandi, Oct 27 2014
  • Mathematica
    s=0;lst={};Do[f=Fibonacci[n];If[OddQ[f],AppendTo[lst,s+=f]],{n,0,5!}];lst
    CoefficientList[Series[(x^3 - x^2 + x + 1)/((x - 1) (x^4 + 4 x^2 - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 27 2014 *)
    Accumulate[Select[Fibonacci[Range[50]],OddQ]] (* or *) LinearRecurrence[{1,4,-4,1,-1},{1,2,5,10,23},40] (* Harvey P. Dale, Sep 05 2023 *)
  • PARI
    Vec(x*(x^3-x^2+x+1)/((x-1)*(x^4+4*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 26 2014
    

Formula

a(2n) = (1/2)*(Fibonacci(3n+2)-1).
a(2n+1) = (1/2)*(Fibonacci(3n+1)+Fibonacci(3n+3)-1).
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)+a(n-4)-a(n-5) for n>4. - Colin Barker, Oct 26 2014
G.f.: x*(x^3-x^2+x+1) / ((x-1)*(x^4+4*x^2-1)). - Colin Barker, Oct 26 2014
From Vladimir Reshetnikov, Oct 30 2015: (Start)
a(n) = ((sin(Pi*n/2)*sqrt(5/phi) - cos(Pi*n/2)/phi^2)/phi^(3*n/2) + (sqrt(5*phi)*sin(Pi*n/2)^2 + phi^2*cos(Pi*n/2)^2)*phi^(3*n/2))/(2*sqrt(5)) - 1/2, where phi=(1+sqrt(5))/2.
E.g.f.: phi^2*cosh(phi^(3/2)*x)/(2*sqrt(5)) + sqrt(phi)*sinh(phi^(3/2)*x)/2 - cos(x/phi^(3/2))/(2*sqrt(5)*phi^2) + sin(x/phi^(3/2))/(2*sqrt(phi)) - exp(x)/2.
(End)