A174561
Number of 3 X n Latin rectangles whose second row contains two cycles with the same order of its elements, e.g., the cycle (x_2, x_3, ..., x_k, x_1) with x_1 < x_2 < ... < x_k.
Original entry on oeis.org
12, 120, 2020, 32410, 563948
Offset: 4
A174563
Number of 3 X n Latin rectangles such that every element of the second row has the same cyclic order (see comment).
Original entry on oeis.org
1, 14, 133, 3300, 93889, 3391086, 148674191, 7796637196, 480640583751, 34370030511334, 2818294139246649, 262403744798653716, 27506121212584723373, 3222018028986227724702, 418998630100386520363619, 60138044879434564251209580, 9477043948863636836099726259, 1632099068624734991723488992214
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. [Journal published by the Academy of Sciences of Russia], 4 (1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian) [English translation in Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257)].
A176901
Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.
Original entry on oeis.org
4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat.(J. of the Akademy of Sciences of Russia) 4(1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian).
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, English translation, Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257).
Showing 1-3 of 3 results.
Comments