A174568 Numbers n such that phi(n) + sigma(n) = sigma(n + phi(n)).
2, 3, 7, 19, 31, 37, 79, 97, 99, 135, 139, 157, 198, 199, 211, 229, 271, 287, 307, 331, 337, 350, 367, 379, 439, 499, 539, 547, 577, 601, 607, 619, 661, 671, 691, 727, 811, 829, 877, 923, 937, 967, 997, 1009, 1069, 1171, 1237, 1254, 1279, 1297, 1399, 1429
Offset: 1
Keywords
Examples
2 is in the sequence because phi(2) + sigma(2) = 1 + 3 = 4, and sigma(2 + phi(2)) = sigma(3) = 4; 99 is in the sequence because phi(99) + sigma(99) = 60 + 156 = 216, and sigma(99 + phi(99)) = sigma(159) = 216.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Magma
[n: n in [1..1500] | (EulerPhi(n) + SumOfDivisors(n)) eq (SumOfDivisors(n + EulerPhi(n)))]; // Vincenzo Librandi, Jul 15 2015
-
Maple
with(numtheory):for n from 1 to 3000 do :if phi(n)+sigma(n) = sigma(n+phi(n)) then print(n):else fi:od:
-
Mathematica
Select[Range[1500],EulerPhi[#]+DivisorSigma[1,#]==DivisorSigma[1, #+ EulerPhi[ #]]&] (* Harvey P. Dale, Jul 05 2018 *)
Comments