cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174618 For n odd a(n) = a(n-2) + a(n-3), for n even a(n) = a(n-2) + a(n-5); with a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 10, 11, 17, 17, 28, 27, 45, 44, 72, 72, 116, 117, 188, 189, 305, 305, 494, 493, 799, 798, 1292, 1292, 2090, 2091, 3382, 3383, 5473, 5473, 8856, 8855, 14329, 14328, 23184, 23184, 37512, 37513, 60696
Offset: 1

Views

Author

Mark Dols, Mar 23 2010

Keywords

Comments

Combination a(2n)=A005252(n-1) and a(2n+1)=A024490(n). Consecutive pairs add up to A000045 and subtract to A010892. If a(1)= 1 formula gives: A103609.

Examples

			As consecutive pairs: (0,1),(0,1),(1,1),(2,1),(3,2),(4,4),...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70);
    [0] cat Coefficients(R!( x^2*(1-x^2+x^3)/((1-x^2+x^4)*(1-x^2-x^4)) )); // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    nxt[{n_,a_,b_,c_,d_,e_}]:={n+1,b,c,d,e,If[EvenQ[n],d+c,d+a]}; NestList[nxt,{5,0,1,0,1,1},50][[All,2]] (* or *) LinearRecurrence[ {0,2,0,-1,0,0,0,1},{0,1,0,1,1,1,2,1},60] (* Harvey P. Dale, Nov 15 2019 *)
  • SageMath
    def A174618(n): return (kronecker(12,n-3) - kronecker(12,n-2) + ((n+1)%2)*fibonacci(n//2) + (n%2)*fibonacci((n+1)//2))//2
    [A174618(n) for n in range(1,71)] # G. C. Greubel, Oct 23 2024

Formula

G.f.: x^2*(1-x^2+x^3) / ( (1-x^2+x^4)*(1-x^2-x^4) ). - R. J. Mathar, Jan 27 2011
a(n) = (1/2)*(A110161(n-3) - A110161(n-2) + A079977(n-2) + A079977(n-1)). - G. C. Greubel, Oct 23 2024