cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174670 Divisors of the order of the Monster group.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 75, 76, 77, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

Let Mnr = A001228(26) = 808017424794512875886459904961710757005754368000000000, also called the Monster number, cf. A003131;
the sequence is finite with A174601(26) = 424488960 terms;
a(n) = n for n < 37 = A053669(Mnr) = (smallest prime not in A002267);
24 of the 26 terms of A001228 are divisors of Mnr, the exceptions are A001228(19) and A001228(23), orders of groups Ly and J4;
also the first 36 factorials and the first 11 primorials are divisors of Mnr (cf. examples);
A174671 gives divisors of Mnr sorted into decreasing order: A174671(n)=a(424488960-n+1)=Mnr/a(n).

Examples

			......... a(30) = A002110(3) = ........... 30 = 5#;
........ a(101) = A000142(5) = .......... 120 = 5!;
........ a(159) = A002110(4) = .......... 210 = 7#;
........ a(398) = A000142(6) = .......... 720 = 6!;
........ a(888) = A002110(5) = ......... 2310 = 11#;
....... a(1461) = A000142(7) = ......... 5040 = 7!;
....... a(1931) = A001228(1) = ......... 7920;
....... a(4207) = A002110(6) = ........ 30030 = 13#;
....... a(4952) = A000142(8) = ........ 40320 = 8!;
....... a(7859) = A001228(2) = ........ 95040;
...... a(10787) = A001228(3) = ....... 175560;
...... a(15477) = A000142(9) = ....... 362880 = 9!;
...... a(17056) = A001228(4) = ....... 443520;
...... a(18257) = A002110(7) = ....... 510510 = 17#;
...... a(19792) = A001228(5) = ....... 604800;
...... a(44571) = A000142(10) = ..... 3628800 = 10!;
...... a(67510) = A002110(8) = ...... 9699690 = 19#;
...... a(68918) = A001228(6) = ..... 10200960;
..... a(118553) = A000142(11) = .... 39916800 = 11!;
..... a(123436) = A001228(7) = ..... 44352000;
..... a(129447) = A001228(8) = ..... 50232960;
..... a(223787) = A002110(9) = .... 223092870 = 23#;
..... a(231256) = A001228(9) = .... 244823040;
..... a(291999) = A000142(12) = ... 479001600 = 12!.
..... a(360936) = A001228(10) = ... 898128000;
..... a(584543) = A001228(11) = .. 4030387200;
.. a(424488960) = A001228(26) = ......... Mnr, the last term.
		

Programs

  • PARI
    divisors(808017424794512875886459904961710757005754368000000000)
    \\ Warning: output is ~13 GB.
    \\ Charles R Greathouse IV, Sep 02 2015

A199014 Divisors of 196884.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108, 1823, 3646, 5469, 7292, 10938, 16407, 21876, 32814, 49221, 65628, 98442, 196884
Offset: 1

Views

Author

Omar E. Pol, Nov 03 2011

Keywords

Comments

196884 =2^2*3^3*1823 is the third coefficient of modular function j (see A000521). 196884 has 24 divisors. Its first 12 divisors are the divisors of 108 =2^2*3^3 (see A018287).

Crossrefs

Programs

Showing 1-2 of 2 results.