cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174679 a(4n) = n^2. a(4n+1) = (4n-1)^2. a(4n+2) = (2n)^2. a(4n+3) = (4n+1)^2.

Original entry on oeis.org

0, 1, 0, 1, 1, 9, 4, 25, 4, 49, 16, 81, 9, 121, 36, 169, 16, 225, 64, 289, 25, 361, 100, 441, 36, 529, 144, 625, 49, 729, 196, 841, 64, 961, 256, 1089, 81, 1225, 324, 1369, 100, 1521, 400, 1681, 121, 1849, 484, 2025, 144, 2209, 576
Offset: 0

Views

Author

Paul Curtz, Nov 30 2010

Keywords

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,1,0,1,1,9,4,25,4,49,16,81},80] (* Harvey P. Dale, Apr 01 2018 *)

Formula

a(2n) = A174595(n).
a(2n+1) = A016754(n-1) = (2n-1)^2, n>0.
a(4n+1) = A016838(n-1).
a(4n+2) = A016742(n).
a(4n+3) = A016814(n).
a(n)= +3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: -x*(1+x^2+x^3+6*x^4+4*x^5+22*x^6+x^7+25*x^8+4*x^9+9*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 01 2010
a(n) = ((16-(1+(-1)^n)*(5+i^n))*n-4*(8-(1+(-1)^n)*(3+i^n)))^2/256, where i=sqrt(-1). - Bruno Berselli, Jan 27 2011 - Apr 09 2011