cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174683 Denominator of 1/16 - 1/n^2.

Original entry on oeis.org

0, 16, 16, 144, 16, 400, 144, 784, 64, 1296, 400, 1936, 18, 2704, 784, 3600, 256, 4624, 1296, 5776, 50, 7056, 1936, 8464, 576, 10000, 2704, 11664, 49, 13456, 3600, 15376, 1024, 17424, 4624, 19600, 81, 21904, 5776, 24336, 1600, 26896, 7056, 29584, 242, 32400, 8464, 35344, 2304, 38416
Offset: 0

Views

Author

Paul Curtz, Nov 30 2010

Keywords

Comments

The value of a(n)=0 is substituted at the pole n=0.
Extends the Bracket spectrum to negative quantum numbers in the fashion of A061038 (1/4-1/n^2) and A181759 (1/9-1/n^2).

Crossrefs

Cf A174680 (numerators).

Programs

  • Mathematica
    Table[If[n == 0, 0, If[n == 4, 16, Denominator[(n^2 - 16)/(4*n)^2]]], {n, 0, 100}] (* G. C. Greubel, Sep 16 2018 *)
    Table[Which[n==0,0,n==4,16,True,Denominator[(n^2-16)/(16n^2)]],{n,0,100}] (* Harvey P. Dale, Dec 13 2024 *)
  • PARI
    for(n=0,100, print1(if(n==0,0, if(n==4,16, denominator((n^2 - 16)/(4*n)^2))), ", ")) \\ G. C. Greubel, Sep 16 2018

Formula

a(n) = A061042(n), n>=4.
a(n) = LCM[n^2 - 16, 16*n^2]/(n^2 - 16), for n>=5. - G. C. Greubel, Sep 16 2018

Extensions

Removed a(-4)-a(-1) since a(-n)=a(n) by G. C. Greubel, Sep 16 2018