cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174708 The number of permutations p of {1,...,n} satisfying |p(i)-p(i+1)| is in {4,5} for i from 1 to n-1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 2, 18, 12, 0, 0, 0, 0, 0, 0, 30, 136, 112, 0, 0, 0, 0, 0, 0, 400, 1348, 1352, 408, 180, 120, 180, 408, 1352, 7356, 19008, 23028, 16788, 12630, 11744, 16742, 31320, 70256, 181106, 367560, 503800, 533504, 546468, 623546, 881384, 1468398, 2697374, 5164896, 8976002, 12977384
Offset: 1

Views

Author

W. Edwin Clark, Mar 27 2010

Keywords

Comments

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {4,5}.

Crossrefs

Programs

  • Maple
    f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:=`if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t], l[j]:= l[j], l[t]; d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:= n-> f(4, 5, n): seq(a(n), n=1..19);  # Alois P. Heinz, Mar 27 2010
  • Mathematica
    f[m_, M_, n_] := f[m, M, n] = Module[{i, l, p, cnt}, Do[l[i] = i, {i, 1, n}]; cnt = 0; p[t_] := Module[{d, j, h}, If[t == n, d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, cnt = cnt+1], For[j = t, j <= n, j++, {l[t], l[j]} = {l[j], l[t]}; d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, p[t+1]]]; h = l[t]; For[j = t, j <= n-1, j++, l[j] = l[j+1]]; l[n] = h]]; p[1]; cnt]; a[n_] := f[4, 5, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 01 2015, after Alois P. Heinz *)

Extensions

a(29)-a(42) from Robert Gerbicz, Nov 22 2010
a(43)-a(44) from Alois P. Heinz, Nov 27 2010
a(45)-a(55) from Andrew Howroyd, Apr 05 2016