cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174719 Triangle T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -7, 1, 1, -51, -51, 1, 1, -239, -399, -239, 1, 1, -967, -2177, -2177, -967, 1, 1, -3639, -10191, -13831, -10191, -3639, 1, 1, -13115, -43719, -74323, -74323, -43719, -13115, 1, 1, -45919, -177119, -360799, -452639, -360799, -177119, -45919, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 28 2010

Keywords

Comments

The row sums of this class of sequences, for varying q, is given by Sum_{k=0..n} T(n, k, q) = q^n * (n+1) + 2^n * (1 - q^n). - G. C. Greubel, Feb 09 2021

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     -7,       1;
  1,    -51,     -51,       1;
  1,   -239,    -399,    -239,       1;
  1,   -967,   -2177,   -2177,    -967,       1;
  1,  -3639,  -10191,  -13831,  -10191,   -3639,       1;
  1, -13115,  -43719,  -74323,  -74323,  -43719,  -13115,      1;
  1, -45919, -177119, -360799, -452639, -360799, -177119, -45919, 1;
		

Crossrefs

Cf. A000012 (q=1), A174718 (q=2), this sequence (q=3), A174720 (q=4).

Programs

  • Magma
    T:= func< n,k,q | 1 + (1-q^n)*(Binomial(n,k) -1) >;
    [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
  • Mathematica
    T[n_, k_, q_]:= 1 +(1-q^n)*(Binomial[n, k] -1);
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    def T(n,k,q): return 1 + (1-q^n)*(binomial(n,k) - 1)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
    

Formula

T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q=3.
Sum_{k=0..n} T(n, k, 3) = 3^n*(n+1) + 2^n*(1 - 3^n) = A027471(n+2) - A248216(n). - G. C. Greubel, Feb 09 2021

Extensions

Edited by G. C. Greubel, Feb 09 2021