cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174734 Prime numbers n such that 2n-1 and 3n-2 are prime.

Original entry on oeis.org

3, 7, 37, 211, 271, 307, 331, 337, 601, 727, 1171, 1237, 1297, 1531, 1657, 2221, 2281, 2557, 3037, 3061, 3067, 4261, 4447, 4801, 4951, 5227, 5581, 5851, 6151, 6361, 6691, 6841, 6967, 7621, 7681, 7687, 7867, 8017, 8167, 8191, 8287, 8521, 8527, 8647, 8941
Offset: 1

Views

Author

Michel Lagneau, Mar 28 2010

Keywords

Comments

If n, 2n-1 and 3n-2 are prime numbers, and if n >= 5, then n*(2*n-1)*(3*n-2) is a Carmichael number (A033502).
Proof: there exist numbers m such that n=6m+1 is prime (if n=6m+5, then 2n-1 = 12m+9 is composite). Let p=(6m+1)(12m+1)(18m+1) = a*b*c. Then p-1 = 6*12*18*m^3 + (6*12 + 6*18 + 12*18)*m^2 + (6 + 12 + 19)*m, so p-1 is divisible by a-1=6m, by b-1=12m, and by c-1=18m; thus p is a Carmichael number.

Examples

			For n=3, 2n-1 = 5, 3n-2 = 7.
For n=7, 2n-1 = 13, 3n-2 = 19 and 7*13*19 = 1729 (a Carmichael number).
For n=37, 2n-1 = 73, 3n-2 = 109 and 37*73*109 = 294409 (a Carmichael number).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A13.

Crossrefs

Programs

  • Magma
    [ n: n in PrimesUpTo(10000) | IsPrime(2*n-1) and IsPrime(3*n-2) ];
    
  • Maple
    with(numtheory): for n from 2 to 15000 do: if type(n,prime)=true and type(2*n-1,prime)=true and type(3*n-2,prime)=true then print (n):else fi:od:
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2*#-1] && PrimeQ[3*#-2]&] (* Vladimir Joseph Stephan Orlovsky, Jan 13 2011 *)
  • PARI
    forprime(p=3,10^3, isprime(2*p-1) && isprime(3*p-2) && print1(p,", ")); \\ Joerg Arndt, Nov 29 2014

Extensions

Typo in term corrected by D. S. McNeil, Nov 20 2010