A174734 Prime numbers n such that 2n-1 and 3n-2 are prime.
3, 7, 37, 211, 271, 307, 331, 337, 601, 727, 1171, 1237, 1297, 1531, 1657, 2221, 2281, 2557, 3037, 3061, 3067, 4261, 4447, 4801, 4951, 5227, 5581, 5851, 6151, 6361, 6691, 6841, 6967, 7621, 7681, 7687, 7867, 8017, 8167, 8191, 8287, 8521, 8527, 8647, 8941
Offset: 1
Keywords
Examples
For n=3, 2n-1 = 5, 3n-2 = 7. For n=7, 2n-1 = 13, 3n-2 = 19 and 7*13*19 = 1729 (a Carmichael number). For n=37, 2n-1 = 73, 3n-2 = 109 and 37*73*109 = 294409 (a Carmichael number).
References
- R. K. Guy, Unsolved Problems in Number Theory, A13.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722.
- Richard Pinch, Carmichael numbers up to 10^18, April 2006.
- Richard Pinch, Carmichael numbers up to 10^18, arXiv:math/0604376 [math.NT], 2006.
Programs
-
Magma
[ n: n in PrimesUpTo(10000) | IsPrime(2*n-1) and IsPrime(3*n-2) ];
-
Maple
with(numtheory): for n from 2 to 15000 do: if type(n,prime)=true and type(2*n-1,prime)=true and type(3*n-2,prime)=true then print (n):else fi:od:
-
Mathematica
Select[Prime[Range[1000]], PrimeQ[2*#-1] && PrimeQ[3*#-2]&] (* Vladimir Joseph Stephan Orlovsky, Jan 13 2011 *)
-
PARI
forprime(p=3,10^3, isprime(2*p-1) && isprime(3*p-2) && print1(p,", ")); \\ Joerg Arndt, Nov 29 2014
Extensions
Typo in term corrected by D. S. McNeil, Nov 20 2010
Comments