cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174794 a(0) = 0 and a(n) = (4*n^3 - 12*n^2 + 20*n - 9)/3 for n >= 1.

Original entry on oeis.org

0, 1, 5, 17, 45, 97, 181, 305, 477, 705, 997, 1361, 1805, 2337, 2965, 3697, 4541, 5505, 6597, 7825, 9197, 10721, 12405, 14257, 16285, 18497, 20901, 23505, 26317, 29345, 32597, 36081, 39805, 43777, 48005, 52497, 57261, 62305, 67637, 73265, 79197, 85441, 92005, 98897
Offset: 0

Views

Author

Roger L. Bagula, Mar 29 2010

Keywords

Comments

For n >= 1, a(n+1) = (4*n^3 + 8*n + 3)/3 is the number of evaluation points on the n-dimensional cube in Stenger's degree 7 cubature rule. - Franck Maminirina Ramaharo, Dec 18 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + x)*(1 + 3*x^2)/(1 - x)^4, {x, 0, 50}], x]
  • Maxima
    a[0] : 0$ a[n] := (4*n^3 - 12*n^2 + 20*n - 9)/3$ makelist(a[n], n, 0, 50); /* Martin Ettl, Oct 21 2012 */

Formula

G.f.: x*(1 + x)*(1 + 3*x^2)/(1 - x)^4.
From Franck Maminirina Ramaharo, Dec 17 2018: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = 8*binomial(n - 1, 3) + 8*binomial(n - 1, 2) + 4*binomial(n - 1, 1) + 1, n >= 1.
E.g.f.: (9 - (9 - 12*x - 4*x^3)*exp(x))/3. (End)

Extensions

Definition replaced by polynomial - The Assoc. Eds. of the OEIS, Aug 10 2010