cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A217873 a(n) = 4*n*(n^2 + 2)/3.

Original entry on oeis.org

0, 4, 16, 44, 96, 180, 304, 476, 704, 996, 1360, 1804, 2336, 2964, 3696, 4540, 5504, 6596, 7824, 9196, 10720, 12404, 14256, 16284, 18496, 20900, 23504, 26316, 29344, 32596, 36080, 39804, 43776, 48004, 52496, 57260, 62304, 67636, 73264, 79196, 85440, 92004
Offset: 0

Views

Author

M. F. Hasler, Oct 13 2012

Keywords

Comments

Occurs as 4th column in the table A142978 of figurate numbers for n-dimensional cross polytope.

Crossrefs

Programs

  • Magma
    [4*n*(n^2+2)/3: n in [0..45]]; // Vincenzo Librandi, Nov 08 2012
  • Mathematica
    Table[4n(n^2 + 2)/3, {n, 0, 39}] (* Alonso del Arte, Oct 22 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,4,16,44},50] (* Harvey P. Dale, Mar 16 2015 *)
  • Maxima
    makelist(4*n*(n^2+2)/3, n, 0, 41); /* Martin Ettl, Oct 15 2012 */
    
  • PARI
    a(n)=(n^2+2)*n/3*4
    

Formula

a(n) = 4*A006527(n).
From Peter Luschny, Oct 14 2012: (Start)
a(n) = A008412(n)/2.
a(n) = A174794(n+1) - 1.
First differences are in A112087.
Second differences are in A008590 and A022144.
Binomial transformation of (a(n), n > 0) is A082138. (End)
G.f.: 4*x*(1 + x^2)/(x - 1)^4. - R. J. Mathar, Oct 15 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=0, a(1)=4, a(2)=16, a(3)=44. - Harvey P. Dale, Mar 16 2015
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*exp(x)*x*(3 + 3*x + x^2)/3.
a(n) = A292022(n)/3. (End)

A322594 a(n) = (4*n^3 + 12*n^2 - 4*n + 3)/3.

Original entry on oeis.org

1, 5, 25, 69, 145, 261, 425, 645, 929, 1285, 1721, 2245, 2865, 3589, 4425, 5381, 6465, 7685, 9049, 10565, 12241, 14085, 16105, 18309, 20705, 23301, 26105, 29125, 32369, 35845, 39561, 43525, 47745, 52229, 56985, 62021, 67345, 72965, 78889, 85125, 91681, 98565
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of evaluation points on the n-dimensional cube in Lyness's degree 7 cubature rule.

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Crossrefs

Programs

  • Mathematica
    Table[(4*n^3 + 12*n^2 - 4*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 + 12*n^2 - 4*n + 3)/3, n, 0, 50);

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = a(n-1) + 4*A028387(n-1), n >= 1.
a(n) = 8*binomial(n, 3) + 16*binomial(n, 2) + 4*binomial(n, 1) + 1.
G.f.: (1 + x + 11*x^2 - 5*x^3)/(1 - x)^4
E.g.f.: (1/3)*(3 + 12*x + 24*x^2 + 4*x^3)*exp(x).

A322595 a(n) = (n^3 + 9*n + 14*n + 9)/3.

Original entry on oeis.org

3, 11, 21, 35, 55, 83, 121, 171, 235, 315, 413, 531, 671, 835, 1025, 1243, 1491, 1771, 2085, 2435, 2823, 3251, 3721, 4235, 4795, 5403, 6061, 6771, 7535, 8355, 9233, 10171, 11171, 12235, 13365, 14563, 15831, 17171, 18585, 20075, 21643, 23291, 25021, 26835
Offset: 0

Views

Author

Keywords

Comments

For n >= 6, a(n) is the number of evaluating points on the hypersphere in R^n in Stoyanovas's degree 7 cubature rule.

Crossrefs

First differences: A027693.

Programs

  • Magma
    [(n^3 + 9*n + 14*n + 9)/3: n in [0..45]]; // Vincenzo Librandi, Jun 05 2019
  • Mathematica
    Table[(n^3 + 9*n + 14*n + 9)/3, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{3,11,21,35},50] (* Harvey P. Dale, Aug 19 2020 *)
  • Maxima
    makelist((n^3 + 9*n + 14*n + 9)/3, n, 0, 50);
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = 2*binomial(n + 1, 3) + 6*binomial(n + 1, 2) + 2*binomial(n + 1, 1) + 1.
G.f.: (3 - x - 5*x^2 + 5*x^3)/(1 - x)^4. [Corrected by Georg Fischer, May 23 2019]
E.g.f.: (1/3)*(9 + 24*x + 12*x^2 + x^3)*exp(x).

A321124 a(n) = (4*n^3 - 6*n^2 + 14*n + 3)/3.

Original entry on oeis.org

1, 5, 13, 33, 73, 141, 245, 393, 593, 853, 1181, 1585, 2073, 2653, 3333, 4121, 5025, 6053, 7213, 8513, 9961, 11565, 13333, 15273, 17393, 19701, 22205, 24913, 27833, 30973, 34341, 37945, 41793, 45893, 50253, 54881, 59785, 64973, 70453, 76233, 82321, 88725
Offset: 0

Views

Author

Keywords

Comments

For n >= 5, a(n) is the number of evaluation points on the n-dimensional cube in Phillips-Dobrodeev's degree 7 cubature rule.

Crossrefs

Programs

  • Mathematica
    Table[(4*n^3 - 6*n^2 + 14*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 - 6*n^2 + 14*n + 3)/3, n, 0, 50);

Formula

a(n) = 8*binomial(n, 3) + 4*binomial(n, 2) + 4*binomial(n, 1) + 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A128445(n+1), n >= 1.
E.g.f.: (1/3)*(3 + 12*x + 6*x^2 + 4*x^3)*exp(x).
G.f.: (1 + x - x^2 + 7*x^3)/(1 - x)^4.

A322597 a(n) = (4*n^3 - 6*n^2 + 20*n + 3)/3.

Original entry on oeis.org

1, 7, 17, 39, 81, 151, 257, 407, 609, 871, 1201, 1607, 2097, 2679, 3361, 4151, 5057, 6087, 7249, 8551, 10001, 11607, 13377, 15319, 17441, 19751, 22257, 24967, 27889, 31031, 34401, 38007, 41857, 45959, 50321, 54951, 59857, 65047, 70529, 76311, 82401, 88807
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) gives the number of function evaluations for Dooren and Ridder's degree 5 and 7 cubature rule over an n-dimensional cube, with the exception of a(3) = 45 and a(4) = 97.

Crossrefs

First differences: 2*A093328.

Programs

  • Maple
    [(4*n^3-6*n^2+20*n+3)/3$n=0..50]; # Muniru A Asiru, Jan 23 2019
  • Mathematica
    Table[(4*n^3 - 6*n^2 + 20*n + 3)/3, {n, 0, 50}]
  • Maxima
    makelist((4*n^3 - 6*n^2 + 20*n + 3)/3, n, 0, 50);

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
G.f.: (1 + 3*x - 5*x^2 + 9*x^3)/((1 - x)^4).
E.g.f.: (1/3)*(3 + 18*x + 6*x^2 + 4*x^3)*exp(x).
Showing 1-5 of 5 results.